Forrester Report: The State of Conversational AI Read the report —>

Getting the Most Out of Your Customer Insights with AI

The phrase “Knowledge is power” is usually believed to have originated with 16th- and 17th-century English philosopher Francis Bacon, in his Meditationes Sacræ. Because many people recognize something profoundly right about this sentiment, it has become received wisdom in the centuries since.

Now, data isn’t exactly the same thing as knowledge, but it is tremendously powerful. Armed with enough of the right kind of data, contact center managers can make better decisions about how to deploy resources, resolve customer issues, and run their business.

As is usually the case, the data contact center managers are looking for will be unique to their field. This article will discuss these data, why they matter, and how AI can transform how you gather, analyze, and act on data.

Let’s get going!

What are Customer Insights in Contact Centers?

As a contact center, your primary focus is on helping people work through issues related to a software product or something similar. But you might find yourself wondering who these people are, what parts of the customer experience they’re stumbling over, which issues are being escalated to human agents and which are resolved by bots, etc.

If you knew these things, you would be able to notice patterns and start proactively fixing problems before they even arise. This is what customer insights is all about, and it can allow you to finetune your procedures, write clearer technical documentation, figure out the best place to use generative AI in your contact center, and much more.

What are the Major Types of Customer Insights?

Before we turn to a discussion of the specifics of customer insights, we’ll deal with the major kinds of customer insights there are. This will provide you with an overarching framework for thinking about this topic and where different approaches might fit in.

Speech and Text Data

Customer service and customer experience both tend to be language-heavy fields. When an agent works with a customer over the phone or via chat, a lot of natural language is generated, and that language can be analyzed. You might use a technique like sentiment analysis, for example, to gauge how frustrated customers are when they contact an agent. This will allow you to form a fuller picture of the people you’re helping, and discover ways of doing so more effectively.

Data on Customer Satisfaction

Contact centers exist to make customers happy as they try to use a product, and for this reason, it’s common practice to send out surveys when a customer interaction is done. When done correctly, the information contained in these surveys is incredibly valuable, and can let you know whether or not you’re improving over time, whether a specific approach to training or a new large language model is helping or hurting customer satisfaction, and more.

Predictive Analytics

Predictive analytics is a huge field, but it mostly boils down to using machine learning or something similar to predict the future based on what’s happened in the past. You might try to forecast average handle time (AHT) based on the time of the year, on the premise that when an issue arises has something to do with how long it will take to get it resolved.

To do this effectively you would need a fair amount of AHT data, along with the corresponding data about when the complaints were raised, and then you could fit a linear regression model on these two data streams. If you find that AHT reliably climbs during certain periods, you can have more agents on hand when required.

Data on Agent Performance

Like employees in any other kind of business, agents perform at different levels. Junior agents will likely take much longer to work through a thorny customer issue than more senior ones, of course, and the same could be said for agents with an extensive technical background versus those without the knowledge this background confers. Or, the same agent might excel at certain kinds of tasks but perform much worse on others.

Regardless, by gathering these data on how agents are performing you, as the manager, can figure out where weaknesses lie across all your teams. With this information, you’ll be able to strategize about how to address those weaknesses with coaching, additional education, a refresh of the standard operating procedures, or what have you.

Channel Analytics

These days, there are usually multiple ways for a customer to get in touch with your contact center, and they all have different dynamics. Sending a long email isn’t the same thing as talking on the phone, and both are distinct from reaching out on social media or talking to a bot. If you have analytics on specific channels, how customers use them, and what their experience was like, you can make decisions about what channels to prioritize.

What’s more, customers will often have interacted with your brand in the past through one or more of these channels. If you’ve been tracking those interactions, you can incorporate this context to personalize responses when they reach out to resolve an issue in the future, which can help boost customer satisfaction.

What Specific Metrics are Tracked for Customer Insights?

Now that we have a handle on what kind of customer insights there are, let’s talk about specific metrics that come up in contact centers!

First Contact Resolution (FCR)

The first contact resolution is the fraction of issues a contact center is able to resolve on the first try, i.e. the first time the customer reaches out. It’s sometimes also known as Right First Time (RFT), for this reason. Note that first contact resolution can apply to any channel, whereas first call resolution applies only when the customer contacts you over the phone. They have the same acronym but refer to two different metrics.

Average Handle Time (AHT)

The average handle time is one of the more important metrics contact centers track, and it refers to the mean length of time an agent spends on a task. This is not the same thing as how long the agent spends talking to a customer, and instead encompasses any work that goes on afterward as well.

Customer Satisfaction (CSAT)

The customer satisfaction score attempts to gauge how customers feel about your product and service. It’s common practice, to collect this information from many customers, then averaging them to get a broader picture of how your customers feel. The CSAT can give you a sense of whether customers are getting happier over time, whether certain products, issues, or agents make them happier than others, etc.

Call Abandon Rate (CAR)

The call abandon rate is the fraction of customers who end a call with an agent before their question has been answered. It can be affected by many things, including how long the customers have to wait on hold, whether they like the “hold” music you play, and similar sorts of factors. You should be aware that CAR doesn’t account for missed calls, lost calls, or dropped calls.

***

Data-driven contact centers track a lot of metrics, and these are just a sample. Nevertheless, they should convey a sense of what kinds of numbers a manager might want to examine.

How Can AI Help with Customer Insights?

And now, we come to the “main” event, a discussion of how artificial intelligence can help contact center managers gather and better utilize customer insights.

Natural Language Processing and Sentiment Analysis

An obvious place to begin is with natural language processing (NLP), which refers to a subfield in machine learning that uses various algorithms to parse (or generate) language.

There are many ways in which NLP can aid in finding customer insights. We’ve already mentioned sentiment analysis, which detects the overall emotional tenor of a piece of language. If you track sentiment over time, you’ll be able to see if you’re delivering more or less customer satisfaction.

You could even get slightly more sophisticated and pair sentiment analysis with something like named entity recognition, which extracts information about entities from language. This would allow you to e.g. know that a given customer is upset, and also that the name of a particular product kept coming up.

Classifying Different Kinds of Communication

For various reasons, contact centers keep transcripts and recordings of all the interactions they have with a customer. This means that they have access to a vast amount of textual information, but since it’s unstructured and messy it’s hard to know what to do with it.

Using any of several different ML-based classification techniques, a contact center manager could begin to tame this complexity. Suppose, for example, she wanted to have a high-level overview of why people are reaching out for support. With a good classification pipeline, she could start automating the processing of sorting communications into different categories, like “help logging in” or “canceling a subscription”.

With enough of this kind of information, she could start to spot trends and make decisions on that basis.

Statistical Analysis and A/B Testing

Finally, we’ll turn to statistical analysis. Above, we talked a lot about natural language processing and similar endeavors, but more than likely when people say “customer insights” they mean something like “statistical analysis”.

This is a huge field, so we’re going to illustrate its importance with an example focusing on churn. If you have a subscription-based business, you’ll have some customers who eventually leave, and this is known as “churn”. Churn analysis has sprung up to apply data science to understanding these customer decisions, in the hopes that you can resolve any underlying issues and positively impact the bottom line.

What kinds of questions would be addressed by churn analysis? Things like what kinds of customers are canceling (i.e. are they young or old, do they belong to a particular demographic, etc.), figuring out their reasons for doing so, using that to predict which similar questions might be in danger of churning soon, and thinking analytically about how to reduce churn.

And how does AI help? There now exist any number of AI tools that substantially automate the process of gathering and cleaning the relevant data, applying standard tests, making simple charts, and making your job of extracting customer insights much easier.

What AI Tools Can Be Used for Customer Insights?

By now you’re probably eager to try using AI for customer insights, but before you do that, let’s spend some talking about what you’d look for in a customer insights tool.

Performant and Reliable

Ideally, you want something that you can depend upon and that won’t drive you crazy with performance issues. A good customer insights tool will have many optimizations under the hood that make crunching numbers easy, and shouldn’t require you to have a computer science degree to set up.

Straightforward Integration Process

Modern contact centers work across a wide variety of channels, including emails, chat, social media, phone calls, and even more. Whatever AI-powered customer insights platform you go with should be able to seamlessly integrate with all of them.

Simple to Use

Finally, your preferred solution should be relatively easy to use. Quiq Insights, for example, makes it a breeze to create customizable funnels, do advanced filtering, see the surrounding context for different conversations, and much more.

Getting the Most Out of AI-Powered Customer Insights

Data is extremely important to the success or failure of modern businesses, and it’s getting more important all the time. Contact centers have long been forward-looking and eager to adopt new technologies, and the same must be true in our brave new data-powered world.

If you’d like a demo of Quiq Insights, reach out to see how we can help you streamline your operation while boosting customer satisfaction!

Request A Demo

Security and Compliance in Next-Gen Contact Centers

Along with almost everyone else, we’ve been singing the praises of large language models like ChatGPT for a while now. We’ve noted how they can be used in retail, how they’re already supercharging contact center agents, and have even put out some content on how researchers are pushing the frontiers of what this technology is capable of.

But none of this is to say that generative AI doesn’t come with serious concerns for security and compliance. In this article, we’ll do a deep dive into these issues. We’ll first provide some context on how advanced AI is being deployed in contact centers, before turning our attention to subjects like data leaks, lack of transparency, and overreliance. Finally, we’ll close with a treatment of the best practices contact center managers can use to alleviate these problems.

What is a “Next-Gen” Contact Center?

First, what are some ways in which a next-generation contact center might actually be using AI? Understanding this will be valuable background for the rest of the discussion about security and compliance, because knowing what generative AI is doing is a crucial first step in protecting ourselves from its potential downsides.

Businesses like contact centers tend to engage in a lot of textual communication, such as when resolving customer issues or responding to inquiries. Due to their proficiency in understanding and generating natural language, LLMs are an obvious tool to reach for when trying to automate or streamline these tasks; for this reason, they have become increasingly popular in enhancing productivity within contact centers.

To give specific examples, there are several key areas where contact center managers can effectively utilize LLMs:

Responding to Customer Queries – High-quality documentation is crucial, yet there will always be customers needing assistance with specific problems. While LLMs like ChatGPT may not have all the answers, they can address many common inquiries, particularly when they’ve been fine-tuned on your company’s documentation.

Facilitating New Employee Training – Similarly, a language model can significantly streamline the onboarding process for new staff members. As they familiarize themselves with your technology and procedures, they may encounter confusion, where AI can provide quick and relevant information.

Condensing Information – While it may be possible to keep abreast of everyone’s activities on a small team, this becomes much more challenging as the team grows. Generative AI can assist by summarizing emails, articles, support tickets, or Slack threads, allowing team members to stay informed without spending every moment of the day reading.

Sorting and Prioritizing Issues – Not all customer inquiries or issues carry the same level of urgency or importance. Efficiently categorizing and prioritizing these for contact center agents is another area where a language model can be highly beneficial. This is especially so when it’s integrated into a broader machine-learning framework, such as one that’s designed to adroitly handle classification tasks.

Language Translation – If your business has a global reach, you’re eventually going to encounter non-English-speaking users. While tools like Google Translate are effective, a well-trained language model such as ChatGPT can often provide superior translation services, enhancing communication with a diverse customer base.

What are the Security and Compliance Concerns for AI?

The preceding section provided valuable context on the ways generative AI is powering the future of contact centers. With that in mind, let’s turn to a specific treatment of the security and compliance concerns this technology brings with it.

Data Leaks and PII

First, it’s no secret that language models are trained on truly enormous amounts of data. And with that, there’s a growing worry about potentially exposing “Personally Identifiable Information” (PII) to generative AI models. PII encompasses details like your actual name, residential address, and also encompasses sensitive information like health records. It’s important to note that even if these records don’t directly mention your name, they could still be used to deduce your identity.

While our understanding of the exact data seen by language models during their training remains incomplete, it’s reasonable to assume they’ve encountered some sensitive data, considering how much of that kind of data exists on the internet. What’s more, even if a specific piece of PII hasn’t been directly shown to an LLM, there are numerous ways it might still come across such data. Someone might input customer data into an LLM to generate customized content, for instance, not recognizing that the model often permanently integrates this information into its framework.

Currently, there’s no effective method to extract data from a language model, and no finetuning technique that ensures it never reveals that data again has yet been found.

Over-Reliance on Models

Are you familiar with the term “ultracrepidarianism”? It’s a fancy SAT word that refers to a person who consistently gives advice or expresses opinions on things that they simply have no expertise in.

A similar sort of situation can arise when people rely too much on language models, or use them for tasks that they’re not well-suited for. These models, for example, are well known to hallucinate (i.e. completely invent plausible-sounding information that is false). If you were to ask ChatGPT for a list of 10 scientific publications related to a particular scientific discipline, you could well end up with nine real papers and one that’s fabricated outright.
From a compliance and security perspective, this matters because you should have qualified humans fact-checking a model’s output – especially if it’s technical or scientific.

To concretize this a bit, imagine you’ve finetuned a model on your technical documentation and used it to produce a series of steps that a customer can use to debug your software. This is precisely the sort of thing that should be fact-checked by one of your agents before being sent.

Not Enough Transparency

Large language models are essentially gigantic statistical artifacts that result from feeding an algorithm huge amounts of textual data and having it learn to predict how sentences will end based on the words that came before.

The good news is that this works much better than most of us thought it would. The bad news is that the resulting structure is almost completely inscrutable. While a machine learning engineer might be able to give you a high-level explanation of how the training process works or how a language model generates an output, no one in the world really has a good handle on the details of what these models are doing on the inside. That’s why there’s so much effort being poured into various approaches to interpretability and explainability.

As AI has become more ubiquitous, numerous industries have drawn fire for their reliance on technologies they simply don’t understand. It’s not a good look if a bank loan officer can only shrug and say “The machine told me to” when asked why one loan applicant was approved and another wasn’t.

Depending on exactly how you’re using generative AI, this may not be a huge concern for you. But it’s worth knowing that if you are using language models to make recommendations or as part of a decision process, someone, somewhere may eventually ask you to explain what’s going on. And it’d be wise for you to have an answer ready beforehand.

Compliance Standards Contact Center Managers Should be Familiar With

To wrap this section up, we’ll briefly cover some of the more common compliance standards that might impact how you run your contact center. This material is only a sketch, and should not be taken to be any kind of comprehensive breakdown.

The General Data Protection Regulation (GDPR) – The famous GDPR is a set of regulations put out by the European Union that establishes guidelines around how data must be handled. This applies to any business that interacts with data from a citizen of the EU, not just to companies physically located on the European continent.

The California Consumer Protection Act (CCPA) – In a bid to give individuals more sovereignty over what happens to their personal data, California created the CCPA. It stipulates that companies have to be clearer about how they gather data, that they have to include privacy disclosures, and that Californians must be given the choice to opt out of data collection.

Soc II – Soc II is a set of standards created by the American Institute of Certified Public Accounts that stresses confidentiality, privacy, and security with respect to how consumer data is handled and processed.

Consumer Duty – Contact centers operating in the U.K. should know about The Financial Conduct Authority’s new “Consumer Duty” regulations. The regulations’ key themes are that firms must act in good faith when dealing with customers, prevent any foreseeable harm to them, and do whatever they can to further the customer’s pursuit of their own financial goals. Lawmakers are still figuring out how generative AI will fit into this framework, but it’s something affected parties need to monitor.

Best Practices for Security and Compliance when Using AI

Now that we’ve discussed the myriad security and compliance concerns facing contact centers that use generative AI, we’ll close by offering advice on how you can deploy this amazing technology without running afoul of rules and regulations.

Have Consistent Policies Around Using AI

First, you should have a clear and robust framework that addresses who can use generative AI, under what circumstances, and for what purposes. This way, your agents know the rules, and your contact center managers know what they need to monitor and look out for.

As part of crafting this framework, you must carefully study the rules and regulations that apply to you, and you have to ensure that this is reflected in your procedures.

Train Your Employees to Use AI Responsibly

Generative AI might seem like magic, but it’s not. It doesn’t function on its own, it has to be steered by a human being. But since it’s so new, you can’t treat it like something everyone will already know how to use, like a keyboard or Microsoft Word. Your employees should understand the policy that you’ve created around AI’s use, should understand which situations require human fact-checking, and should be aware of the basic failure modes, such as hallucination.

Be Sure to Encrypt Your Data

If you’re worried about PII or data leakages, a simple solution is to encrypt your data before you even roll out a generative AI tool. If you anonymize data correctly, there’s little concern that a model will accidentally disclose something it’s not supposed to down the line.

Roll Your Own Model (Or Use a Vendor You Trust)

The best way to ensure that you have total control over the model pipeline – including the data it’s trained on and how it’s finetuned – is to simply build your own. That being said, many teams will simply not be able to afford to hire the kinds of engineers who are equal to this task. In such case, you should utilize a model built by a third party with a sterling reputation and many examples of prior success, like the Quiq platform.

Engage in Regular Auditing

As we mentioned earlier, AI isn’t magic – it can sometimes perform in unexpected ways, and its performance can also simply degrade over time. You need to establish a practice of regularly auditing any models you have in production to make sure they’re still behaving appropriately. If they’re not, you may need to do another training run, examine the data they’re being fed, or try to finetune them.

Futureproofing Your Contact Center Security

The next generation of contact centers is almost certainly going to be one that makes heavy use of generative AI. There are just too many advantages, from lower average handling time to reduced burnout and turnover, to forego it.

But doing this correctly is a major task, and if you want to skip the engineering hassle and headache, give the Quiq conversational AI platform a try! We have the expertise required to help you integrate a robust, powerful generative AI tool into your contact center, without the need to write a hundred thousand lines of code.

Request A Demo

LLM-Powered AI Assistants for Hotels – Ultimate Guide

New technologies have always been disruptive, supercharging those firms that embrace it and requiring the others to adapt or be left behind.

With the rise of new approaches to AI, such as large language models, we can see this dynamic playing out again. One place where AI assistants could have a major impact is in the hotel industry.

In this piece, we’ll explore the various ways AI assistants can be used in hotels, and what that means for the hoteliers that keep these establishments running.

Let’s get going!

What is an AI Assistant?

The term “AI assistant” refers to any use of an algorithmic or machine-learning system to automate a part of your workflow. A relatively simple example would be the autocomplete found in almost all text-editing software today, while a much more complex example might involve stringing together multiple chain-of-thought prompts into an agent capable of managing your calendar.

There are a few major types of AI assistants. Near and dear to our hearts, of course, are chatbots that function in places like contact centers. These can be agent-facing or customer-facing, and can help with answering common questions, helping draft replies to customer inquiries, and automatically translating between many different natural languages.

Chatbots (and large language models more generally) can also be augmented to produce speech, giving rise to so-called “voice assistants”. These tend to work like other kinds of chatbots but have the added ability to actually vocalize their text, creating a much more authentic customer experience.

In a famous 2018 demo, Google Duplex was able to complete a phone call to a local hair salon to make a reservation. One remarkable thing about the AI assistant was how human it sounded – its speech even included “uh”s and “mm-hmm”s that made it almost indistinguishable from an actual person, at least over the phone and for short interactions.

Then, there are 3D avatars. These digital entities are crafted to look as human as possible, and are perfect for basic presentations, websites, games, and similar applications. Graphics technology has gotten astonishingly good over the past few decades and, in conjunction with the emergence of technologies like virtual reality and the metaverse, means that 3D avatars could play a major role in the contact centers of the future.

One thing to think about if you’re considering using AI assistants in a hotel or hospitality service is how specialized you want them to be. Although there is a significant effort underway to build general-purpose assistants that are able to do most of what a human assistant does, it remains true that your agents will do better if they’re fine-tuned on a particular domain. For the time being, you may want to focus on building an AI assistant that is targeted at providing excellent email replies, for example, or answering detailed questions about your product or service.

That being said, we recommend you check the Quiq blog often for updates on AI assistants; when there’s a breakthrough, we’ll deliver actionable news as soon as possible.

How Will AI Assistants Change Hotels?

Though the audience we speak to is largely comprised of people working in or managing contact centers, the truth is that there are many overlaps with those in the hospitality space. Since these are both customer-service and customer-oriented domains, insights around AI assistants almost always transfer over.

With that in mind, let’s dive in now to talk about how AI is poised to transform the way hotels function!

AI for Hotel Operations

Like most jobs, operating a hotel involves many tasks that require innovative thinking and improvisation, and many others that are repetitive, rote, and quotidian. Booking a guest, checking them in, making small changes to their itinerary, and so forth are in the latter category, and are precisely the sorts of things that AI assistants can help with.

In an earlier example, we saw that chatbots were already able to handle appointment booking five years ago, so it requires no great leap in imagination to see how slightly more powerful systems would be able to do this on a grander scale. If it soon becomes possible to offload much of the day-to-day of getting guests into their rooms to the machines, that will free up a great deal of human time and attention to go towards more valuable work.

It’s possible, of course, that this will lead to a dramatic reduction in the workforce needed to keep hotels running, but so far, the evidence points the other way; when large language models have been used in contact centers, the result has been more productivity (especially among junior agents), less burnout, and reduced turnover. We can’t say definitively that this will apply in hotel operations, but we also don’t see any reason to think that it wouldn’t.

AI for Managing Hotel Revenues

Another place that AI assistants can change hotels is in forecasting and boosting revenues. We think this will function mainly by making it possible to do far more fine-grained analyses of consumption patterns, inventory needs, etc.

Everyone knows that there are particular times of the year when vacation bookings surge, and others in which there are a relatively small number of bookings. But with the power of big data and sophisticated AI assistants, analysts will be able to do a much better job of predicting surges and declines. This means prices for rooms or other accommodations will be more fluid and dynamic, changing in near real-time in response to changes in demand and the personal preferences of guests. The ultimate effect will be an increase in revenue for hotels.

AI in Marketing and Customer Service

A similar line of argument holds for using AI assistants in marketing and customer service. Just as both hotels and guests are better served when we can build models that allow for predicting future bookings, everyone is better served when it becomes possible to create more bespoke, targeted marketing.

By utilizing data sources like past vacations, Google searches, and browser history, AI assistants will be able to meet potential clients where they’re at, offering them packages tailored to exactly what they want and need. This will not only mean increased revenue for the hotel, but far more satisfaction for the customers (who, after all, might have gotten an offer that they themselves didn’t realize they were looking for.)

If we were trying to find a common theme between this section and the last one, we might settle on “flexibility”. AI assistants will make it possible to flexibly adjust prices (raising them during peak demand and lowering them when bookings level off), flexibly tailor advertising to serve different kinds of customers, and flexibly respond to complaints, changes, etc.

Smart Buildings in Hotels

One particularly exciting area of research in AI centers around so-called “smart buildings”. By now, most of us have seen relatively “smart” thermostats that are able to learn your daily patterns and do things like turn the temperature up when you leave to save on the cooling bill while turning it down to your preferred setting as you’re heading home from work.

These are certainly worthwhile, but they barely even scratch the surface of what will be possible in the future. Imagine a room where every device is part of an internet-of-things, all wired up over a network to communicate with each other and gather data about how to serve your needs.

Your refrigerator would know when you’re running low on a few essentials and automatically place an order, a smart stove might be able to take verbal commands (“cook this chicken to 180 degrees, then power down and wait”) to make sure dinner is ready on time, a smoothie machine might be able to take in data about your blood glucose levels and make you a pre-workout drink specifically tailored to your requirements on that day, and so on.

Pretty much all of this would carry over to the hotel industry as well. As is usually the case there are real privacy concerns here, but assuming those challenges can be met, hotel guests may one day enjoy a level of service that is simply not possible with a staff comprised only of human beings.

Virtual Tours and Guest Experience

Earlier, we mentioned virtual reality in the context of 3D avatars that will enhance customer experience, but it can also be used to provide virtual tours. We’re already seeing applications of this technology in places like real estate, but there’s no reason at all that it couldn’t also be used to entice potential guests to visit different vacation spots.

When combined with flexible and intelligent AI assistants, this too could boost hotel revenues and better meet customer needs.

Using AI Assistants in Hotels

As part of the service industry, hoteliers work constantly to best meet their customers’ needs and, for this reason, they would do well to keep an eye on emerging technologies. Though many advances will have little to do with their core mission, others, like those related to AI assistants, will absolutely help them forecast future demands, provide personalized service, and automate routine parts of their daily jobs.

If all of this sounds fascinating to you, consider checking out the Quiq conversational CX platform. Our sophisticated offering utilizes large language models to help with tasks like question answering, following up with customers, and perfecting your marketing.

Schedule a demo with us to see how we can bring your hotel into the future!

Request A Demo

Explainability vs. Interpretability in Machine Learning Models

In recent months, we’ve produced a tremendous amount of content about generative AI – from high-level primers on what large language models are and how they work, to discussions of how they’re transforming contact centers, to deep dives on the cutting edge of generative technologies.

This amounts to thousands of words, much of it describing how models like ChatGPT were trained by having them e.g. iteratively predict what the final sentence of a paragraph will be given the previous sentences.

But for all that, there’s still a tremendous amount of uncertainty about the inner workings of advanced machine-learning systems. Even the people who build them generally don’t understand how particular functions emerge or what a particular circuit is doing.

It would be more accurate to describe these systems as having been grown, like an inconceivably complex garden. And just as you might have questions if your tomatoes started spitting out math proofs, it’s natural to wonder why generative models are behaving in the way that they are.

These questions are only going to become more important as these technologies are further integrated into contact centers, schools, law firms, medical clinics, and the economy in general.

If we use machine learning to decide who gets a loan, who is likely to have committed a crime, or to have open-ended conversations with our customers, it really matters that we know how all this works.

The two big approaches to this task are explainability and interpretability.

Comparing Explainability and Interpretability

Under normal conditions, this section would come at the very end of the article, after we’d gone through definitions of both these terms and illustrated how they work with copious examples.

We’re electing to include it at the beginning for a reason; while the machine-learning community does broadly agree on what these two terms mean, there’s a lot of confusion about which bucket different techniques go into.

Below, for example, we’ll discuss Shapley Additive Explanations (SHAP). Some sources file this as an approach to explainability, while others consider it a way of making a model more interpretable.

A major contributing factor to this overlap is the simple fact that the two concepts are very closely related. Once you can explain a fact you can probably interpret it, and a big part of interpretation is explanation.

Below, we’ve tried our best to make sense of these important research areas, and have tried to lay everything out in a way that will help you understand what’s going on.

With that caveat out of the way, let’s define explainability and interpretability.

Broadly, explainability means analyzing the behavior of a model to understand why a given course of action was taken. If you want to know why data point “a” was sorted into one category while data point “b” was sorted into another, you’d probably turn to one of the explainability techniques described below.

Interpretability means making features of a model, such as its weights or coefficients, comprehensible to humans. Linear regression models, for example, calculate sums of weighted input features, and interpretability would help you understand what exactly that means.

Here’s an analogy that might help: you probably know at least a little about how a train works. Understanding that it needs fuel to move, has to have tracks constructed a certain way to avoid crashing, and needs brakes in order to stop would all contribute to the interpretability of the train system.

But knowing which kind of fuel it requires and for what reason, why the tracks must be made out of a certain kind of material, and how exactly pulling a brake switch actually gets the train to stop are all facets of the explainability of the train system.

What is Explainability in Machine Learning?

In machine learning, explainability refers to any set of techniques that allow you to reason about the nuts and bolts of the underlying model. If you can at least vaguely follow how data are processed and how they impact the final model output, the system is explainable to that degree.

Before we turn to the techniques utilized in machine learning explainability, let’s talk at a philosophical level about the different types of explanations you might be looking for.

Different Types of Explanations

There are many approaches you might take to explain an opaque machine-learning model. Here are a few:

  • Explanations by text: One of the simplest ways of explaining a model is by reasoning about it with natural language. The better sorts of natural-language explanations will, of course, draw on some of the explainability techniques described below. You can also try to talk about a system logically, by i.e. describing it as calculating logical AND, OR, and NOT operations.
  • Explanations by visualization: For many kinds of models, visualization will help tremendously in increasing explainability. Support vector machines, for example, use a decision boundary to sort data points and this boundary can sometimes be visualized. For extremely complex datasets this may not be appropriate, but it’s usually worth at least trying.
  • Local explanations: There are whole classes of explanation techniques, like LIME, that operate by illustrating how a black-box model works in some particular region. In other words, rather than trying to parse the whole structure of a neural network, we zoom in on one part of it and say “This is what it’s doing right here.”

Approaches to Explainability in Machine Learning

Now that we’ve discussed the varieties of explanation, let’s get into the nitty-gritty of how explainability in machine learning works. There are a number of different explainability techniques, but we’re going to focus on two of the biggest: SHAP and LIME.

Shapley Additive Explanations (SHAP) are derived from game theory and are a commonly-used way of making models more explainable. The basic idea is that you’re trying to parcel out “credit” for the model’s outputs among its input features. In game theory, potential players can choose to enter a game, or not, and this is the first idea that is ported over to SHAP.

SHAP “values” are generally calculated by looking at how a model’s output changes based on different combinations of features. If a model has, say, 10 input features, you could look at the output of four of them, then see how that changes when you add a fifth.

By running this procedure for many different feature sets, you can understand how any given feature contributes to the model’s overall predictions.

Local Interpretable Model-Agnostic Explanation (LIME) is based on the idea that our best bet in understanding a complex model is to first narrow our focus to one part of it, then study a simpler model that captures its local behavior.

Let’s work through an example. Imagine that you’ve taken an enormous amount of housing data and fit a complex random forest model that’s able to predict the price of a house based on features like how old it is, how close it is to neighbors, etc.

LIME lets you figure out what the random forest is doing in a particular region, so you’d start by selecting one row of the data frame, which would contain both the input features for a house and its price. Then, you would “perturb” this sample, which means that for each of its features and its price, you’d sample from a distribution around that data point to create a new, perturbed dataset.

You would feed this perturbed dataset into your random forest model and get a new set of perturbed predictions. On this complete dataset, you’d then train a simple model, like a linear regression.

Linear regression is almost never as flexible and powerful as a random forest, but it does have one advantage: it comes with a bunch of coefficients that are fairly easy to interpret.

This LIME approach won’t tell you what the model is doing everywhere, but it will give you an idea of how the model is behaving in one particular place. If you do a few LIME runs, you can form a picture of how the model is functioning overall.

What is Interpretability in Machine Learning?

In machine learning, interpretability refers to a set of approaches that shed light on a model’s internal workings.

SHAP, LIME, and other explainability techniques can also be used for interpretability work. Rather than go over territory we’ve already covered, we’re going to spend this section focusing on an exciting new field of interpretability, called “mechanistic” interpretability.

Mechanistic Interpretability: A New Frontier

Mechanistic interpretability is defined as “the study of reverse-engineering neural networks”. Rather than examining subsets of input features to see how they impact a model’s output (as we do with SHAP) or training a more interpretable local model (as we do with LIME), mechanistic interpretability involves going directly for the goal of understanding what a trained neural network is really, truly doing.

It’s a very young field that so far has only tackled networks like GPT-2 – no one has yet figured out how GPT-4 functions – but already its results are remarkable. It will allow us to discover the actual algorithms being learned by large language models, which will give us a way to check them for bias and deceit, understand what they’re really capable of, and how to make them even better.

Why are Interpretability and Explainability Important?

Interpretability and explainability are both very important areas of ongoing research. Not so long ago (less than twenty years), neural networks were interesting systems that weren’t able to do a whole lot.

Today, they are feeding us recommendations for news, entertainment, driving cars, trading stocks, generating reams of content, and making decisions that affect people’s lives, forever.

This technology is having a huge and growing impact, and it’s no longer enough for us to have a fuzzy, high-level idea of what they’re doing.

We now know that they work, and with techniques like SHAP, LIME, mechanistic interpretability, etc., we can start to figure out why they work.

Final Thoughts on Interpretability vs. Explainability

In contact centers and elsewhere, large language models are changing the game. But though their power is evident, they remain a predominately empirical triumph.

The inner workings of large language models remain a mystery, one that has only recently begun to be unraveled through techniques like the ones we’ve discussed in this article.

Though it’s probably asking too much to expect contact center managers to become experts in machine learning interpretability or explainability, hopefully, this information will help you make good decisions about how you want to utilize generative AI.

And speaking of good decisions, if you do decide to move forward with deploying a large language model in your contact center, consider doing it through one of the most trusted names in conversational AI. In recent weeks, the Quiq platform has added several tools aimed at making your agents more efficient and your customers happier.

Set up a demo today to see how we can help you!

Request A Demo

AI Translation for Global Brands

AI is already having a dramatic impact on various kinds of work, in places like contact centers, marketing agencies, research outfits, etc.

In this piece, we’re going to take a closer look at one specific arena where people are trying things (and always learning), and that’s AI translation. We’re going to look at how AI systems can help in translation tasks, and how that is helping companies build their global brands.

What is AI Translation?

AI translation, or “machine” translation as it’s also known, is more or less what it sounds like: the use of algorithms, computers, or software to translate from one natural language to another.

The chances are pretty good you’ve used AI translation in one form or another already. If you’ve ever relied on Google Translate to double-check your conjugation of a Spanish verb or to read the lyrics of the latest K-pop sensation in English, you know what it can accomplish.

But the mechanics and history of this technology are equally fascinating, and we’ll cover those now.

How Does AI Translation Work?

There are a few different approaches to AI translation, which broadly fall into three categories.

The first is known as rule-based machine translation, and it works by drawing on the linguistic structure that scaffolds all language. If you have any bad memories of trying to memorize Latin inflections or French grammatical rules, you’ll be more than familiar with these structures, but you may not know that they can also be used to build powerful, flexible AI translation systems.

Three ingredients are required to make rule-based machine translation function: a set of rules describing how the input language works, a set of rules describing how the output language works, and dictionaries translating words between the input and output languages.

It’s probably not hard to puzzle out the major difficulty with rule-based machine translation: it demands a great deal of human time and attention and is therefore very difficult to scale.

The second approach is known as statistical machine translation. Unlike rule-based machine translation, statistical machine translation tends to focus on higher-level groupings, known as “phrases”. Statistical models of the relevant languages are built through an analysis of two kinds of data: bilingual corpora containing both the input and output language, and monolingual corpora in the output language. Once these models have been developed, they can be used to automatically translate between the language pairs.

Finally, there’s neural machine translation. This is the most recently developed AI translation method, and it relies on deep neural networks trained to predict sequences of tokens. Neural machine translation rapidly supplanted statistical methods owing to its remarkable performance, but there can be edge cases where statistical translations do better. As is usually the case, of course, there are also hybrid systems that use both neural and statistical machine translation.

Building a Global Brand with AI

There are many ways in which the emerging technology of artificial intelligence can be used to build a global brand. In this section, we’ll walk through a few examples.

How can AI Translation Be Used to Build a Global Brand?

The first way AI translation can be used for building a global brand is that it helps with internal communications. If you have an international workforce – programmers in Eastern Europe, for example, or support staff in the Phillippines – keeping them all on the same page is even more important than usual. Coordinating your internal teams is hard enough when they’re all in the same building, to say nothing of when they’re spread out across the globe, over multiple time zones and multiple cultures.

The last thing you need is mistakes occurring because of a bad translation from English into their native languages, so getting high-quality AI translations is crucial for the internal cohesion required for building your global brand.

Of course, more or less the exact same case can be made for external communication. It would be awfully difficult to build a global brand that doesn’t routinely communicate with the public, through advertisements, various kinds of content or media, etc. And if the brand is global, most, or perhaps all, of this content will need to be translated somewhere along the way.

There are human beings who can handle this work, but with the rising sophistication of AI translators, it’s becoming possible to automate substantial parts of it. Besides the obvious cost savings, there are other benefits to AI translation. For one thing, AI is increasingly able to translate into what are called “low-resource” languages, i.e. languages for which there isn’t much training material and only small populations of native speakers. If AI is eventually able to translate for these populations, it could open up whole new markets that weren’t reachable before.

For another, it may soon be possible to do dynamic, on-the-fly translations of brand material. We’re not aware of any system that can 1) identify a person’s native language from snippets of their speech or other identifying features, and 2) instantly produce a translation of i.e. a billboard or poster in real-time, but it’s not at all beyond our imagination. If no one has built something that can do this yet, they surely will before too long.

Prompt Engineering for Building a Global Brand

One thing we haven’t touched on much so far is how generative AI will impact marketing. Generative AI is already being used to create drafts of web copy, mockups of new designs for buildings, products, and clothing, translating between languages, and much else besides.

This leads naturally to a discussion of prompt engineering, which refers to the careful sculpting of the linguistic instructions that are given to large generative AI models. These models are enormously complex artifacts whose inner workings are largely mysterious and whose outputs are hard to predict in advance. Skilled prompt engineers have put in the time required to develop a sense for how to phrase instructions just so, and they’re able to get remarkably high-quality output with much less effort than the rest of us.

If you’re thinking about using generative AI in building your global brand you’ll almost certainly need to be thinking prompt engineering, so be sure to check out Quiq’s blog for more in-depth discussions of this and related subjects.

How can AI Translation Benefit the Economy?

Throughout this piece, we’ve discussed various means by which AI translation can help build global brands. But you might still want to see some hard evidence of the economic benefits of machine translation.

Economists Erik Brynjolfsson, Xiang Hui, and Meng Liu conducted a study of how AI translation has actually impacted trade on an e-commerce platform. They found that “… the introduction of a machine translation system…had a significant effect on international trade on this platform, increasing export quantity by 17.5%.”

More specifically, they found evidence of “…a substantial reduction in buyers’ translation-related search costs due to the introduction of this system.” On the whole, their efforts support the conclusion that “… language barriers significantly hinder trade and that AI has already substantially improved overall economic efficiency.”

Though this is only one particular study on one particular mechanism, it’s not hard to see how it can apply more broadly. If more people can read your marketing material, it stands to reason that more people will buy your product, for example.

AI Translation and Global Brands

Global brands face many unique challenges: complex supply chains, distributed workforces, and the bewildering diversity of human language.

This last challenge is something that AI language translation can help with, as it’s already proving useful in boosting trade and exchange by reducing the friction involved in translation.

If you want to build a global brand and are keen to use conversational AI to do it, check out the Quiq platform. Our services include a variety of agent-facing and customer-facing tools, and make it easy to automate question-answering tasks, follow-ups with clients, and many other kinds of work involved in running a contact center. Schedule a demo with us today to see how we can help you build your brand!

Request A Demo

What is Automated Customer Service? – Ultimate Guide

From graph databases to automated machine learning pipelines and beyond, a lot of attention gets paid to new technologies. But the truth is, none of it matters if users aren’t able to handle the more mundane tasks of managing permissions, resolving mysterious errors, and getting the tools installed and working on their native systems.

This is where customer service comes in. Though they don’t often get the credit they deserve, customer service agents are the ones who are responsible for showing up every day to help countless others actually use the latest and greatest technology.

Like every job since the beginning of jobs, there are large components of customer service that have been automated, are currently being automated, or will be automated at some point soon.

That’s our focus for today. We want to explore customer service as a discipline, and then talk about some of how generative AI can automate substantial parts of the standard workflow.

What is Customer Service?

To begin with, we’ll try to clarify what customer service is and why it matters. This will inform our later discussion of automated customer service, and help us think through the value that can be added through automation.

Customer service is more or less what it sounds like: serving your customers – your users, or clients – as they go about the process of utilizing your product. A software company might employ customer service agents to help onboard new users and troubleshoot failures in their product, while a services’ company might use them for canceling appointments and rescheduling.

Over the prior few decades, customer service has evolved alongside many other industries. As mobile phones have become firmly ensconced in everyone’s life, for example, it has become more common for businesses to supplement the traditional avenues of phone calls and emails by adding text messaging and chatbot customer support to their customer service toolkit. This is part of what is known as an omni-channel strategy, in which more effort is made to meet customers where they’re at rather than expecting them to conform to the communication pathways a business already has in place.

Naturally, many of these kinds of interactions can be automated, especially with the rise of tools like large language models. We’ll have more to say about that shortly.

Why is Customer Service Important?

It may be tempting for those writing the code to think that customer service is a “nice to have”, but that’s not the case at all. However good a product’s documentation is, there will simply always be weird behaviors and edge cases in which a skilled customer service agent (perhaps helped along with AI) needs to step in and aid a user in getting everything running properly.

But there are other advantages as well. Besides simply getting a product to function, customer service agents contribute to a company’s overall brand, and the general emotional response users have to the company and its offerings.

High-quality customer service agents can do a lot to contribute to the impression that a company is considerate, and genuinely cares about its users.

What Are Examples of Good Customer Service?

There are many ways in which customer service agents can do this. For example, it helps a lot when customer service agents try to transmit a kind of warmth over the line.

Because so many people spend their days interacting with others through screens, it can be easy to forget what that’s like, as tone of voice and facial expression are hard to digitally convey. But when customer service agents greet a person enthusiastically and go beyond “How may I help you” by exchanging some opening pleasantries, they feel more valued and more at ease. This matters a lot when they’ve been banging their head against a software problem for half a day.

Customer service agents have also adapted to the digital age by utilizing emojis, exclamation points, and various other kinds of internet-speak. We live in a more casual age, and under most circumstances, it’s appropriate to drop the stiffness and formalities when helping someone with a product issue.

That said, you should also remember that you’re talking to customers, and you should be polite. Use words like “please” when asking for something, and don’t forget to add a “thank you.” It can be difficult to remember this when you’re dealing with a customer who is simply being rude, especially when you’ve had several such customers in a row. Nevertheless, it’s part of the job.

Finally, always remember that a customer gets in touch with you when they’re having a problem, and above all else, your job is to get them what they need. From the perspective of contact center managers, this means you need periodic testing or retraining to make sure your agents know the product thoroughly.

It’s reasonable to expect that agents will sometimes need to look up the answer to a question, but if they’re doing that constantly it will not only increase the time it takes to resolve an issue, it will also contribute to customer frustration and a general sense that you don’t have things well in hand.

Automation in Customer Service

Now that we’ve covered what customer service is, why it matters, and how to do it well, we have the context we need to turn to the topic of automated customer service.

For all intents and purposes, “automation” simply refers to outsourcing all or some of a task to a machine. In industries like manufacturing and agriculture, automation has been steadily increasing for hundreds of years.

Until fairly recently, however, the technology didn’t yet exist to automate substantial portions of customer service worth. With the rise of machine learning, and especially large language models like ChatGPT, that’s begun to change dramatically.

Let’s dive into this in more detail.

Examples of Automated Customer Service

There are many ways in which customer service is being automated. Here are a few examples:

  • Automated questions answering – Many questions are fairly prosaic (“How do I reset my password”), and can effectively be outsourced to a properly finetuned large language model. When such a model is trained on a company’s documentation, it’s often powerful enough to handle these kinds of low-level requests.
  • Summarization – There have long been models that could do an adequate job of summarization, but large language models have kicked this functionality into high gear. With an endless stream of new emails, Slack messages, etc. constantly being generated, having an agent that can summarize their contents and keep agents in the loop will do a lot to boost their productivity.
  • Classifying incoming messages – Classification is another thing that models have been able to do for a while, and it’s also something that helps a lot. Having an agent manually sort through different messages to figure out how to prioritize them and where they should go is no longer a good use of time, as algorithms are now good enough to do a major chunk of this kind of work.
  • Translation – One of the first useful things anyone attempted to do with machine learning was translating between different natural languages (i.e. from Russian into English). Once squarely in the purview of human beings, this is now a task that machines can do almost as well, at least for customer service work.

Should We Automate Customer Service?

All this having been said, you may still have questions about the wisdom of automating customer service work. Sure, no one wants to spend hours every day looking up words in Mandarin to answer a question or prioritizing tickets by hand, but aren’t we in danger of losing something important as customer service agents? Might we not automate ourselves out of a job?

No one can predict the future, of course, but the early evidence is quite to the contrary. Economists have conducted studies of how contact centers have changed with the introduction of generative AI, and their findings are very encouraging.

Because these models are (usually) finetuned on conversations from more experienced agents, they’re able to capture a lot of how those agents handle issues. Typical response patterns, politeness, etc. become “baked into” the models. Junior agents using these models are able to climb the learning curve more quickly and, feeling less strained in their new roles, are less likely to quit. This, in turn, puts less of a burden on managers and makes the organization overall more stable. Everyone ends up happier and more productive.

So far, it’s looking like AI-based automation in contact centers will be like automation almost everywhere else: machines will gradually remove the need for human attention in tedious or otherwise low-value tasks, freeing them up to focus on places where they have more of an advantage.

If agents don’t have to sort tickets anymore or resolve routine issues, they can spend more time working on the really thorny problems, and do so with more care.

Moving Quiq-ly into the Future!

Where the rubber of technology meets the road of real-world use cases, customer service agents are extremely important. They not only make sure customers can use a company’s tools, but they also contribute to the company brand in their tone, mannerisms, and helpfulness.

Like most other professions, customer service agents are being impacted by automation. So far, this impact has been overwhelmingly positive and is likely to prove a competitive advantage in the decades ahead.

If you’re intrigued by this possibility, Quiq has created a suite of industry-leading conversational AI tools, both for customer-facing applications and agent-facing applications. Check them out or schedule a demo with us to see what all the fuss is about.

Request A Demo

Top 5 Benefits of AI for Hospitality

As an industry, hospitality is aimed squarely at meeting customer needs. Whether it’s a businesswoman staying in 5-star resorts or a mother of three getting a quiet weekend to herself, the job of the hospitality professionals they interact with is to anticipate what they want and make sure they get it.

As technologies like artificial intelligence become more powerful and pervasive, customer expectations will change. When that businesswoman books a hotel room, she’ll expect there to be a capable virtual assistant talking to her about a vacation spot; when that mother navigates the process of buying a ticket, she’ll expect to be interacting with a very high-quality chatbot, perhaps one that’s indistinguishable from an actual human being.

All of this means that the hospitality industry needs to be thinking about how it will be impacted by AI. It needs to consider what the benefits of AI for hospitality are, what limitations are faced by AI, and how it can be utilized effectively. That’s what we’re here to do today, so let’s get started.

Why is AI Important for Hospitality?

AI is important in hospitality for the same reason it’s important everywhere else: it’s poised to become a transformative technology, and just about every industry – especially those that involve a lot of time interacting through text – could be up-ended by it.

The businesses that emerge the strongest from this ongoing revolution will be those that successfully anticipate how large language models and similar tools change workflows, company setups, cost and pricing structures, etc.

With that in mind, let’s work through some of the ways in which AI is (or will) be used in hospitality.

How is AI Used in Hospitality?

There are many ways in which AI is used in hospitality, and in the sections that follow we’ll walk through a number of the most important ones.

Chatbots and Customer Service

Perhaps the most obvious place to begin is with chatbots and customer service more broadly. Customer-facing chatbots were an early application of natural language processing, and have gotten much better in the decades since. With ChatGPT and similar LLMs, they’re currently in the process of taking another major leap forward.

Now that we have models that can be fine-tuned to answer questions, summarize texts, and carry out open-ended interactions with human users, we expect to see them becoming more and more common in hospitality. Someday soon, it may be the case that most of the steps involved in booking a room or changing a flight happens entirely without human assistance of any kind.

This is especially compelling because we’ve gotten so good at making chatbots that are very deferential and polite (though as we make clear in the final section on “limitations”, this is not always the case.)

Virtual Assistants

AI virtual assistants are a generalization of the idea behind chatbots. Whereas chatbots can be trained to offload many parts of hospitality work, powerful virtual assistants will take this dynamic to the next level. Once we have better agents – systems able to take strings of actions in pursuit of a goal – many more parts of hospitality work will be outsourced to the machines.

What might this look like?

Well, we’ve already seen some tools that can do relatively simple tasks like “book a flight to Indonesia”, but they’re still not all that flexible. Imagine an AI virtual assistant able to handle all the subtleties and details involved in a task like “book a flight for ten executives to Indonesia, and book lodging near the conference center and near the water, too, then make reservations for a meal each night of the week, taking into account the following dietary restrictions.”

Work into building generative agents like this is still in its infancy, but it is nevertheless an active area of research. It’s hard to predict when we’ll have agents who can be trusted to do advanced work with minimal oversight, but once we do, it’ll really begin to change how the hospitality industry runs.

Sentiment Analysis

Sentiment analysis refers to an automated, algorithmic approach to classifying the overall vibe of a piece of text. “The food was great” is obviously positive sentiment, “the food was awful” is obviously negative sentiment, and then there are many subtler cases involving e.g. sarcasm.

The hospitality industry desperately needs tools able to perform sentiment analysis at scale. It helps them understand what clients like and dislike about particular services or locations, and can even help in predicting future demand. If, for example, there’s a bunch of positive sentiment around a concert being given in Indonesia, that indicates that there will probably be a spike in bookings there.

Boosting Revenues for Hospitality

People have long been interested in using AI to make money, whether that be from trading strategies generated by ChatGPT or from using AI to create ultra-targeted marketing campaigns.

All of this presents an enormous opportunity for the hospitality industry. Through a combination of predictive modeling, customer segmentation, sentiment analysis, and related techniques, it’ll become easier to forecast changes in demand, create much more responsive pricing models, and intelligently track inventory.

What this will ultimately mean is better revenues for hotels, event centers, and similar venues. You’ll be able to cross-sell or upsell based on a given client’s unique purchase history and interests, you’ll have fewer rooms go unoccupied, and you’ll be less likely to have clients who are dissatisfied by the fact tha you ran out of something.

Sustainability and Waste Management

An underappreciated way in which AI will benefit hospitality is by making sustainability easier. There are a few ways this could manifest.

One is by increasing energy efficiency. Most of you will already be familiar with currently-existing smart room technology, like thermostats that learn when you’re leaving and turn themselves up, thus lowering your power bill.

But there’s room for this to become much more far-ranging and powerful. If AI is put in charge of managing the HVAC system for an entire building, for example, it could lead to savings on the order of millions of dollars, while simultaneously making customers more comfortable during their stay.

And the same holds true for waste management. AI systems smart enough to discover when a trash can is full means that your cleaning staff won’t have to spend nearly as much time patrolling. They’ll be able to wait until they get a notification to handle the problem, gaining back many hours in their day that can be put towards higher-value work.

What are the Limitations of AI in Hospitality?

None of this is to suggest that there won’t also be drawbacks to using AI in hospitality. To prepare you for these challenges, we’ll spend the next few sections discussing how AI can fail, allowing you to be proactive in mitigating these downsides.

Impersonality in Customer Service

By properly fine-tuning a large language model, it’s possible to get text output that is remarkably polite and conversational. Still, throughout repeated or sustained interactions, the model can come to feel vaguely sterile.

Though it might in principle be hard to tell when you’re interacting with AI v.s. a human, the fact remains that models don’t actually have any empathy. They may say “I’m sorry that you had to deal with that…”, but they won’t truly know what frustration is like, and over time, a human is likely to begin picking up on that.

We can’t say for certain when models will be capable of expressing sympathy in a fully convincing way, but for the time being, you should probably incorporate systems that can flag conversations that are going off the rails so that a human customer service professional can intervene.

Toxic Output, Bias, and Abuse

As in the previous section, a lot of work has gone into finetuning models so that they don’t produce toxic, biased, or abusive language. Still, not all the kinks have been ironed out, and if a question is phrased in just the right way, it’s often possible to get past these safeguards. That means your models might unpredictably become insulting or snarky, which is a problem for a hospitality company.

As we’ve argued elsewhere, careful monitoring is one of the prices that have to be paid when managing an AI assistant. Since this technology is so new, we have at best a very vague idea of what kinds of prompts lead to what kinds of responses. So, you’ll simply have to diligently keep your eyes peeled for examples of model responses that are inappropriate, having a human take over if and when things are going poorly.

(Or, you can work with Quiq – our guardrails ensure none of this is a problem for enterprise hospitality businesses).

AI in Hospitality

New technologies have always changed the way industries operate, and that’s true for hospitality as well. From virtual assistants to chatbots to ultra-efficient waste management, AI offers many benefits (and many challenges) for hospitality.

If you want to explore using these tools in your hospitality enterprise but don’t know the first thing about hiring AI engineers, check out the Quiq conversational CX platform. We’ve built a proprietary large language model offering that makes it easy to incorporate chatbots and other technologies, without having to worry about what’s going on under the hood.

Schedule a demo with us today to find out how you can catch the AI wave!

Request A Demo

4 Benefits of Using AI Assistants in the Retail Industry

Artificial intelligence (AI) has been making remarkable strides in recent months. Owing to the release of ChatGPT in November of 2022, a huge amount of attention has been on large language models, but the truth is, there have been similar breakthroughs in computer vision, reinforcement learning, robotics, and many other fields.

In this piece, we’re going to focus on how these advances might contribute specifically to the retail sector.

We’ll start with a broader overview of AI, then turn to how AI-based tools are making it easier to make targeted advertisements, personalized offers, hiring decisions, and other parts of retail substantially easier.

What are AI assistants in Retail?

Artificial intelligence is famously difficult to define precisely, but for our purposes, you can think of it as any attempt to get intelligent behavior from a machine. This could involve something relatively straightforward, like building a linear regression model to predict future demand for a product line, or something far more complex, like creating neural networks able to quickly spit out multiple ideas for a logo design based on a verbal description.

AI assistants are a little different and specifically require building agents capable of carrying out sequences of actions in the service of a goal. The field of AI is some 70 years old now and has been making remarkable strides over the past decade, but building robust agents remains a major challenge.

It’s anyone’s guess as to when we’ll have the kinds of agents that could successfully execute an order like “run this e-commerce store for me”, but there’s nevertheless been enough work for us to make a few comments about the state of the art.

What are the Ways of Building AI Assistants?

On its own, a model like ChatGPT can (sometimes) generate working code and (often) generate correct API calls. But as things stand, a human being still needs to utilize this code for it to do anything useful.

Efforts are underway to remedy this situation by making models able to use external tools. Auto-GPT, for example, combines an LLM and a separate bot that repeatedly queries it. Together, they can take high-level tasks and break them down into smaller, achievable steps, checking off each as it works toward achieving the overall objective.

AssistGPT and SuperAGI are similar endeavors, but they’re better able to handle “multimodal” tasks, i.e those that also involve manipulating images or sounds rather than just text.

The above is a fairly cursory examination of building AI agents, but it’s not difficult to see how the retail establishments of the future might use agents. You can imagine agents that track inventory and re-order crucial items when they get low, or that keep an eye on sales figures and create reports based on their findings (perhaps even using voice synthesis to actually deliver those reports), or creating customized marketing campaigns, generating their own text, images, and A/B tests to find the highest-performing strategies.

What are the Advantages of Using AI in Retail Business?

Now that we’ve talked a little bit about how AI and AI assistants can be used in retail, let’s spend some time talking about why you might want to do this in the first place. What, in other words, are the big advantages of using AI in retail?

1. Personalized Marketing with AI

People can’t buy your products if they don’t know what you’re selling, which is why marketing is such a big part of retail. For its part, marketing has long been a future-oriented business, interested in leveraging the latest research from psychology or economics on how people make buying decisions.

A kind of holy grail for marketing is making ultra-precise, bespoke marketing efforts that target specific individuals. The kind of messaging that would speak to a childless lawyer in a big city won’t resonate the same way with a suburban mother of five, and vice versa.

The problem, of course, is that there’s just no good way at present to do this at scale. Even if you had everything you needed to craft the ideal copy for both the lawyer and the mother, it’s exceedingly difficult to have human beings do this work and make sure it ends up in front of the appropriate audience.

AI could, in theory, remedy this situation. With the rise of social media, it has become possible to gather stupendous amounts of information about people, grouping them into precise and fine-grained market segments–and, with platforms like Facebook Ads, you can make really target advertisements for each of these segments.

AI can help with the initial analysis of this data, i.e. looking at how people in different occupations or parts of the country differ in their buying patterns. But with advanced prompt engineering and better LLMs, it could also help in actually writing the copy that induces people to buy your products or services.

And it doesn’t require much imagination to see how AI assistants could take over quite a lot of this process. Much of the required information is already available, meaning that an agent would “just” need to be able to build simple models of different customer segments, and then put together a prompt that generates text that speaks to each segment.

2. Personalized Offerings with AI

A related but distinct possibility is using AI assistants to create bespoke offerings. As with messaging, people will respond to different package deals; if you know how to put one together for each potential customer, there could be billions in profits waiting for you. Companies like Starbucks have been moving towards personalized offerings for a while, but AI will make it much easier for other retailers to jump on this trend.

We’ll illustrate how this might work with a fictional example. Let’s say you’re running a toy company, and you’re looking at data for Angela and Bob. Angela is an occasional customer, mostly making purchases around the holidays. When she created her account she indicated that she doesn’t have children, so you figure she’s probably buying toys for a niece or nephew. She’s not a great target for a personalized offer, unless perhaps it’s a generic 35% discount around Christmas time.

Bob, on the other hand, buys fresh trainsets from you on an almost weekly basis. He more than likely has a son or daughter who’s fascinated by toy machines, and you have customer-recommendation algorithms trained on many purchases indicating that parents who buy the trains also tend to buy certain Lego sets. So, next time Bob visits your site, your AI assistant can offer him a personalized discount on Lego sets.

Maybe he bites this time, maybe he doesn’t, but you can see how being able to dynamically create offerings like this would help you move inventory and boost individual customer satisfaction a great deal. AI can’t yet totally replace humans in this kind of process, but it can go a long way toward reducing the friction involved.

3. Smarter Pricing

The scenario we just walked through is part of a broader phenomenon of smart pricing. In economics, there’s a concept known as “price discrimination”, which involves charging a person roughly what they’re willing to pay for an item. There may be people who are interested in buying your book for $20, for example, but others who are only willing to pay $15 for it. If you had a way of changing the price to match what a potential buyer was willing to pay for it, you could make a lot more money (assuming that you’re always charging a price that at least covers printing and shipping costs).

The issue, of course, is that it’s very difficult to know what people will pay for something–but with more data and smarter AI tools, we can get closer. This will have the effect of simultaneously increasing your market (by bringing in people who weren’t quite willing to make a purchase at a higher price) and increasing your earnings (by facilitating many sales that otherwise wouldn’t have taken place).

More or less the same abilities will also help with inventory more generally. If you sell clothing you probably have a clearance rack for items that are out of season, but how much should you discount these items? Some people might be fine paying almost full price, while others might need to see a “60%” off sticker before moving forward. With AI, it’ll soon be possible to adjust such discounts in real-time to make sure you’re always doing brisk business.

4. AI and Smart Hiring

One place where AI has been making real inroads is in hiring. It seems like we can’t listen to any major podcast today without hearing about some hiring company that makes extensive use of natural language processing and similar tools to find the best employees for a given position.

Our prediction is that this trend will only continue. As AI becomes increasingly capable, eventually it will be better than any but the best hiring managers at picking out talent; retail establishments, therefore, will rely on it more and more to put together their sales force, design and engineering teams, etc.

Is it Worth Using AI in Retail?

Throughout this piece, we’ve sung the praises of AI in retail. But the truth is, there are still questions about how much sense it makes to leverage retail at the moment, given its expense and risks.

In this section, we’ll briefly go over some of the challenges of using AI in retail so you can have a fuller picture of how its advantages compare to its disadvantages, and thereby make a better decision for your situation.

The one that’s on everyone’s minds these days is the tendency of even powerful systems like ChatGPT to hallucinate incorrect information or to generate output that is biased or harmful. Finetuning and techniques like retrieval augmented generation can mitigate this somewhat, but you’ll still have to spend a lot of time monitoring and tinkering with the models to make sure that you don’t end up with a PR disaster on your hands.

Another major factor is the expense involved. Training a model on your own can cost millions of dollars, but even just hiring a team to manage an open-source model will likely set you back a fair bit (engineers aren’t cheap).

By far the safest and easiest way of testing out AI for retail is by using a white glove solution like the Quiq conversational CX platform. You can test out our customer-facing and agent-facing AI tools while leaving the technical details to us, and at far less expense than would be involved in hiring engineering talent.

Set up a demo with us to see what we can do for you.

Request A Demo

AI is Changing Retail

From computer-generated imagery to futuristic AI-based marketing plans, retail won’t be the same with the advent of AI. This will be especially true once we have robust AI assistants able to answer customer questions, help them find clothes that fit, and offer precision discounts and offerings tailored to each individual shopper.

If you don’t want to get left behind, you’ll need to begin exploring AI as soon as possible, and we can help you do that. Check out our product or find a time to talk with us, today!

AI in Retail: 5 Ways Retailers Are Using AI Assistants

Businesses have always turned to the latest and greatest technology to better serve their customers, and retail is no different. From early credit card payment systems to the latest in online advertising, retailers know that they need to take advantage of new tools to boost their profits and keep shoppers happy.

These days, the thing that’s on everyone’s mind is artificial intelligence (AI). AI has had many, many definitions over the years, but in this article, we’ll mainly focus on the machine-learning and deep-learning systems that have captured the popular imagination. These include large language models, recommendation engines, basic AI assistants, etc.

In the world of AI in retail, you can broadly think of these systems as falling into one of two categories: “the ones that customers see”, and “the ones that customers don’t see.” In the former category, you’ll find innovations such as customer-facing chatbots and algorithms that offer hyper-personalized options based on shopping history. In the latter, you’ll find precision fraud detection systems and finely-tuned inventory management platforms, among other things.

We’ll cover each of these categories, in order. By the end of this piece, you’ll have a much better understanding of the ways retailers are using AI assistants and will be better able to think about how you want to use this technology in your retail establishment.

Let’s get going!

Using AI Assistants for Better Customer Experience

First, let’s start with AI that interacts directly with customers. The major ways in which AI is transforming the customer experience are through extreme levels of personalization, more “humanized” algorithms, and shopping assistants.

Personalization in Shopping and Recommendations

One of the most obvious ways of improving the customer experience is by tailoring that experience to each individual shopper. There’s just one problem: this is really difficult to do.

On the one hand, most of your customers will be new to you, people about whom you have very little information and whose preferences you have no good way of discovering. On the other, there are the basic limitations of your inventory. If you’re a brick-and-mortar establishment you have a set number of items you can display, and it’s going to be pretty difficult for you to choose them in a way that speaks to each new customer on a personal level.

For a number of reasons, AI has been changing this state of affairs for a while now, and holds the potential to change it much more in the years ahead.

A key part of this trend is recommendation engines, which have gotten very good over the past decade or so. If you’ve ever been surprised by YouTube’s ability to auto-generate a playlist that you really enjoyed, you’ve seen this in action.

Recommendation engines can only work well when there is a great deal of customer data for them to draw on. As more and more of our interactions, shopping, and general existence have begun to take place online, there has arisen a vast treasure trove of data to be analyzed. In some situations, recommendation engines can utilize decades of shopping experience, public comments, reviews, etc. in making their recommendations, which means a far more personalized shopping experience and an overall better customer experience.

What’s more, advances in AR and VR are making it possible to personalize even more of these experiences. There are platforms now that allow you to upload images of your home to see how different pieces of furniture will look, or to see how clothes fit you without the need to try them on first.

We expect that this will continue, especially when combined with smarter printing technology. Imagine getting a 3D-printed sofa made especially to fit in that tricky corner of your living room, or flipping through a physical magazine with advertisements that are tailored to each individual reader.

Humanizing the Machines

Next, we’ll talk about various techniques for making the algorithms and AI assistants we interact with more convincingly human. Admittedly, this isn’t terribly important at the present moment. But as more of our shopping and online activity comes to be mediated by AI, it’ll be important for them to sound empathic, supportive, and attuned to our emotions.

The two big ways this is being pursued at the moment are chatbots and voice AI.

Chatbots, of course, will probably be familiar to you already. ChatGPT is inarguably the most famous example, but you’ve no doubt interacted with many (much simpler) chatbots via online retailers or contact centers.

In the ancient past, chatbots were largely “rule-based”, meaning they were far less flexible and far less capable of passing as human. With the ascendancy of the deep learning paradigm, however, we now have chatbots that are able to tutor you in chemistry, translate between dozens of languages, help you write code, answer questions about company policies, and even file simple tickets for contact center agents.

Naturally, this same flexibility also means that retail managers must tread lightly. Chatbots are known to confidently hallucinate incorrect information, to become abusive, or to “help” people with malicious projects, like building weapons or computer viruses.

Even leaving aside the technical challenges of implementing a chatbot, you have to carefully monitor your chatbots to make sure they’re performing as expected.

Then, there’s voice-based AI. Computers have been synthesizing speech for many years, but it hasn’t been until recently that they’ve become really good at it. Though you can usually tell that a computer is speaking if you listen very carefully, it’s getting harder and harder all the time. We predict that, in the not-too-distant future, you’ll simply have no idea whether it’s a human or a machine on the other end of the line when you call to return an item or get store hours.

But computers have also gotten much better at the other side of voice-based AI, speech recognition. Software like otter.ai, for example, is astonishingly accurate when generating transcriptions of podcast episodes or conversations, even when unusual words are used.

Taken together, advances in both speech synthesis and speech recognition paint a very compelling picture of how the future of retail might unfold. You can imagine walking into a Barnes & Noble in the year 2035 and having a direct conversation with a smart speaker or AI assistant. You’ll tell it what books you’ve enjoyed in the past, it’ll query its recommendation system to find other books you might like, and it’ll speak to you in a voice that sounds just like a human’s.

You’ll be able to ask detailed questions about the different books’ content, and it’ll be able to provide summaries, discuss details with you, and engage in an unscripted, open-ended conversation. It’ll also learn more about you over time, so that eventually it’ll be as though you have a friend that you go shopping with whenever you buy new books, clothing, etc.

Shopping Assistants and AI Agents

So far, we’ve confined our conversation specifically to technologies like large language models and conversational AI. But one thing we haven’t spent much time on yet is the possibility of creating agents in the future.

An agent is a goal-directed entity, one able to take an instruction like “Make me a reservation at an Italian restaurant” and decompose the goal into discrete steps, performing each one until the task is completed.

With clever enough prompt engineering, you can sort of get agent-y behavior out of ChatGPT, but the truth is, the work of building advanced AI agents has only just begun. Tools like AutoGPT and LangChain have made a lot of progress, but we’re still a ways away from having agents able to reliably do complex tasks.

It’s not hard to see how different retail will be when that day arrives, however. Eventually, you may be outsourcing a lot of your shopping to AI assistants, who will make sure the office has all the pens it needs, you’ve got new science fiction to read, and you’re wearing the latest fashion. Your assistant might generate new patterns for t-shirts and have them custom-printed; if LLMs get good enough, they’ll be able to generate whole books and movies tuned to your specific tastes.

Using AI Assistants to Run A Safer, Leaner Operation

Now that we’ve covered the ways AI assistants will impact the things customers can see, let’s talk about how they’ll change the things customers don’t see.

There are lots of moving parts in running a retail establishment. If you’ve got ~1,000 items on display in the front, there are probably several thousand more items in a warehouse somewhere, and all of that has to be tracked. What’s more, there’s a constant process of replenishing your supply, staying on top of new trends, etc.

All of this will also be transformed by AI, and in the following sections, we’ll talk about a few ways in which this could happen.

Fraud Detection and Prevention

Fraud, unfortunately, is a huge part of modern life. There’s an entire industry of people buying and selling personal information for nefarious purposes, and it’s the responsibility of anyone trafficking in that information to put safeguards in place.

That includes a large number of retail establishments, which might keep data related to a customer’s purchases, their preferences, and (of course) their actual account and credit card numbers.

This isn’t the place to get into a protracted discussion of cybersecurity, but much of fraud detection relies on AI, so it’s fair game. Fraud detection techniques range from the fairly basic (flagging transactions that are much larger than usual or happen in an unusual geographic area) to the incredibly complex (training powerful reinforcement learning agents that constantly monitor network traffic).

As AI becomes more advanced, so will fraud detection. It’ll become progressively more difficult for criminals to steal data, and the world will be safer as a result. Of course, some of these techniques are also ones that can be used by the bad guys to defraud people, but that’s why so much effort is going into putting guardrails on new AI models.

Streamlining Inventory

Inventory management is an obvious place for optimization. Correctly forecasting what you’ll need and thereby reducing waste can have a huge impact on your bottom line, which is why there are complex branches of mathematics aimed at modeling these domains.

And – as you may have guessed – AI can help. With machine learning, extremely accurate forecasts can be made of future inventory requirements, and once better AI agents have been built, they may even be able to automate the process of ordering replacement materials.

Forward-looking retail managers will need to keep an eye on this space to fully utilize its potential.

AI Assistants and the Future of Retail

AI is changing a great many things. It’s already making contact center agents more effective and is being utilized by a wide variety of professionals, ranging from copywriters to computer programmers.

But the space is daunting, and there’s so much to learn about implementing, monitoring, and finetuning AI assistants that it’s hard to know where to start. One way to easily dip your toe in these deep waters is with the Quiq Conversational CX platform.

Our technology makes it easy to create customer-facing AI bots and similar tooling, which will allow you to see how AI can figure into your retail enterprise without hiring engineers and worrying about the technical details.

Schedule a demo with us today to get started!

Request A Demo

How Scoped AI Ensures Safety in Customer Service

AI chat applications powered by Large Language Models (LLMs) have helped us reimagine what is possible in a new generation of AI computing.

Along with this excitement, there is also a fair share of concern and fear about the potential risks. Recent media coverage, such as this article from the New York Times, highlights how the safety measures of ChatGPT can be circumvented to produce harmful information.

To better understand the security risks of LLMs in customer service, it’s important we add some context and differentiate between “Broad AI” versus “Scoped AI”. In this article, we’ll discuss some of the tactics used to safely deploy scoped AI assistants in a customer service context.

Broad AI vs. Scoped AI: Understanding the Distinction

Scoped AI is designed to excel in a well-defined domain, guided and limited by a software layer that maintains its behavior within pre-set boundaries. This is in contrast to broad AI, which is designed to perform a wide range of tasks across virtually all domains.

Scoped AI and Broad AI answer questions fundamentally differently. With Scoped AI the LLM is not used to determine the answer, it is used to compose a response from the resources given to it. Conversely, answers to questions in Broad AI are determined by the LLM and cannot be verified.

Broad AI simply takes a user message and generates a response from the LLM; there is no control layer outside of the LLM itself. Scoped AI is a software layer that applies many steps to control the interaction and enforce safety measures applicable to your company.

In the following sections, we’ll dig into a more detailed explanation of the steps.

Ensuring the Safety of Scoped AI in Customer Service

1. Inbound Message Filtering

Your AI should perform a semantic similarity search to recognize in-scope vs out-of-scope messages from a customer. Malicious characters and known prompt injections should be identified and rejected with a static response. Inbound message filtering is an important step in limiting the surface area to the messages expected from your customers.

2. Classifying Scope

LLMs possess strong Natural Language Understanding and Reasoning skills (NLU & NLR). An AI assistant should perform a number of classifications. Common classifications include the topic, user type, sentiment, and sensitivity of the message. These classifications should be specific to your company and the jobs of your AI assistant. A data model and rules engine should be used to apply your safety controls.

3. Resource Integration

Once an inbound message is determined to be in-scope, company-approved resources should be retrieved for the LLM to consult. Common resources include knowledge articles, brand facts, product catalogs, buying guides, user-specific data, or defined conversational flows and steps.

Your AI assistant should support non-LLM-based interactions to securely authenticate the end user or access sensitive resources. Authenticating users and validating data are important safety measures in many conversational flows.

4. Verifying Responses

With a response in hand, the AI should verify the answer is in scope and on brand. Fact-checking and corroboration techniques should be used to ensure the information is derived from the resource material. An outbound message should never be delivered to a customer if it cannot be verified by the context your AI has on hand.

5. Outbound Message Filtering

Outbound message filtering tactics include: conducting prompt leakage analysis, semantic similarity checks, consulting keyword blacklists, and ensuring all links and contact information are in-scope of your company.

6. Safety Monitoring and Analysis

Deploying AI safely also requires that you have mechanisms to capture and retrospect on the completed conversations. Collecting user feedback, tracking resource usage, reviewing state changes, and clustering conversations should be available to help you identify and reinforce the safety measures of your AI.

In addition, performing full conversation classifications will also allow you to identify emerging topics, confirm resolution rates, produce safety reports, and understand the knowledge gaps of your AI.

Other Resources

At Quiq, we actively monitor and endorse the OWASP Top 10 for Large Language Model Applications. This guide is provided to help promote secure and reliable AI practices when working with LLMs. We recommend companies exploring LLMs and evaluating AI safety consult this list to help navigate their projects.

Final Thoughts

By safely leveraging LLM technology through a Scoped AI software layer, CX leaders can:

1. Elevate Customer Experience
2. Boost Operational Efficiency
3. Enhance Decision Making
4. Ensure Consistency and Compliance

Reach out to sales@quiq.com to learn how Quiq is helping companies improve customer satisfaction and drive efficiency at the same.

Generative AI Privacy Concerns – Your Guide to the Current Landscape

Generative AI, such as the large language model (LLM) ChatGPT and the image-generation tool DALL-E, are already having a major impact in places like marketing firms and contact centers. With their ability to create compelling blog posts, email blasts, YouTube thumbnails, and more, we believe they’re only going to become an increasingly integral part of the workflows of the future.

But for all their potential, there remain serious questions about the short- and long-term safety of generative AI. In this piece, we’re going to zero in on one particular constellation of dangers: those related to privacy.

We’ll begin with a brief overview of how generative AI works, then turn to various privacy concerns, and finish with a discussion of how these problems are being addressed.

Let’s dive in!

What is Generative AI (and How is it Trained)?

In the past, we’ve had plenty to say about how generative AI works under the hood. But many of the privacy implications of generative AI are tied directly to how these models are trained and how they generate output, so it’s worth briefly reviewing all of this theoretical material, for the sake of completeness and to furnish some much-needed context.

When an LLM is trained, it’s effectively fed huge amounts of text data, from the internet, from books, and similar sources of human-generated language. What it tries to do is predict how a sentence or paragraph will end based on the preceding words.

Let’s concretize this a bit. You probably already know some of these famous quotes:

  • “You must be the change you wish to see in the world.” (Mahatma Gandhi)
  • “You may say I’m a dreamer, but I’m not the only one.” (John Lennon)
  • “The only thing we have to fear is fear itself.” (Franklin D. Roosevelt)

What ChatGPT does is try to predict what the italicized parts say based on everything that comes before. It’ll read “You must be the change you”, for example, and then try to predict “wish to see in the world.”

When the training process begins the model will basically generate nonsense, but as it develops a better and better grasp of English (and other languages), it gradually becomes the remarkable artifact we know today.

Generative AI Privacy Concerns

From a privacy perspective, two things about this process might concern us:

The first is what data are fed into the model, and the second is what kinds of output the models might generate.

We’ll have more to say about each of these in the next section, then cover some broader concerns about copyright law.

Generative AI and Sensitive Data

First, there’s real concern over the possibility that generative AI models have been shown what is usually known as “Personally Identifiable Information” (PII). This is data such as your real name, your address, etc., and can also include things like health records that might not have your name but which can be used to figure out who you are.

The truth is, we only have limited visibility into the data that LLMs are shown during training. Given how much of the internet they’ve ingested, it’s a safe bet that at least some sensitive information has been included. And even if it hasn’t seen a particular piece of PII, there are myriad ways in which it can be exposed to it. You can imagine, for example, someone feeding customer data into an LLM to produce tailored content for them, not realizing that, in many cases, the model will have permanently incorporated that data into its internal structure.

There isn’t a great way at present to remove data from an LLM, and finetuning it in such a way that it never exposes that data in the future is something no one knows how to do yet.

The other major concern around sensitive data in the context of generative AI is that they will simply hallucinate allegations about people that damage their reputations and compromise their privacy. We’ve written before about the now-infamous case of law professor Jonathan Turley, who was falsely accused of sexually harassing several of his students by ChatGPT. We imagine that in the future there will be many more such fictitious scandals, potentially ones that are very damaging to the reputations of the accused.

Generative AI, Intellectual Property, and Copyright Law

There have also been questions about whether some of the data fed into ChatGPT and similar models might be in violation of copyright law. Earlier this year, in fact, a number of well-known writers leveled a suit against both OpenAI (the creators of ChatGPT) and Meta (the creators of LLaMa).

The suit claims that these teams trained their models on proprietary data contained in the works of authors like Michael Chabon, “without consent, without credit, and without compensation.” Similar charges have been made against Midjourney and Stability AI, both of whom have created AI-based image generation models.

These are rather thorny questions of jurisprudence. Though copyright law is a fairly sophisticated tool for dealing with various kinds of human conflicts, no one has ever had to deal with the implications of enormous AI models training on this much data. Only time will tell how the courts will ultimately decide, but if you’re using customer-facing or agent-facing AI tools in a place like a contact center, it’s at least worth being aware of the controversy.

Contact Us

Mitigating Privacy Risks from Generative AI

Now that we’ve elucidated the dimensions of the privacy concerns around generative AI, let’s spend some time talking about various efforts to address these concerns. We’ll focus primarily on data privacy laws, better norms around how data is collected and used, and the ways in which training can help.

Data Privacy Laws

First, and biggest, are attempts by different regulatory bodies to address data privacy issues with legislation. You’re probably already familiar with the European Union’s General Data Protection Regulation (GDPR), which puts numerous rules in place regarding how data can be gathered and used, including in advanced AI systems like LLMs.

Canada’s lesser-known Artificial Intelligence and Data Act (AIDA) mandates that anyone building a potentially disruptive AI system, like ChatGPT, must create guardrails to minimize the likelihood that their system will create biased or harmful output.

It’s not clear yet the extent to which laws like these will be able to achieve their objectives, but we expect that they’ll be just the opening salvo in a long string of legislative attempts to ameliorate the potential downsides of AI.

Robust Data Collection and Use Policies

There are also many things that private companies can do to address privacy concerns around data, without waiting for bureaucracies to catch up.

There’s too much to say about this topic to do it justice here, but we can make a few brief comments to guide you in your research.

One thing many companies are investing in is better anonymization techniques. Differential privacy, for example, is emerging as a promising way of simultaneously allowing for the collection of private data while anonymizing it enough to guard against LLMs accidentally exposing it at some point in the future.

Then, of course, there are myriad ways of securely storing data once you have it. This mostly boils down to keeping a tight lid on who is able to access private data – through i.e. encryption and a strict permissioning system – and carefully monitoring what they do with it once they access it.

Finally, it helps to be as public as possible about your data collection and use policies. Make sure they’re published somewhere that anyone can read them. Whenever possible, give users the ability to opt out of data collection, if that’s what they want to do.

Better Training for Those Building and Using Generative AI

The last piece of the puzzle is simply to train your workforce about data collection, data privacy, and data management. Sound laws and policies won’t do much good if the actual people who are interacting with private data don’t have a solid grasp of your expectations and protocols.

Because there are so many different ways in which companies collect and use data, there is no one-size-fits-all solution we can offer. But you might begin by sending your employees this article, as a way of opening up a broader conversation about your future data-privacy practices.

Data Privacy in the Age of Generative AI

In all its forms, generative AI is a remarkable technology that will change the world in many ways. Like the printing press, gunpowder, fire, and the wheel, these changes will be both good and bad.

The world will need to think carefully about how to get as many of the advantages out of generative AI as possible while minimizing its risks and dangers.

A good place to start with this is by focusing on data privacy. Because this is a relatively new problem, there’s a lot of work to be done in establishing legal frameworks, company policies, and best practices. But that also means there’s an enormous opportunity as well, to positively shape the long-term trajectory of AI technologies.

Moving from Natural Language Understanding (NLU) to Customer-Facing AI Assistants

There can no longer be any doubt that large language models and generative AI more broadly are going to have a real impact on many industries. Though we’re still in the preliminary stages of working out the implications, the evidence so far suggests that this is already happening.

Language models in contact centers are helping to more junior workers be more productive, and reducing employee turnover in the process. They’re also being used to automate huge swathes of content creation, assisting in data augmentation tasks, and plenty else besides.

Part of the task we’ve set ourselves here at Quiq is explaining how these models are trained and how they’ll make their way into the workflows of the future. To that end, we’ve written extensively about how large language models are trained, how researchers are pushing them into uncharted territories, and which models are appropriate for any given task.

This post is another step in that endeavor. Specifically, we’re going to discuss natural language understanding, how it works, and how it’s distinct from related terms (like “natural language generation”). With that done, we’ll talk about how natural language understanding is a foundational first step and takes us closer to creating robust customer-facing AI assistants.

What is Natural Language Understanding?

Language is a tool of remarkable power and flexibility – so much so that it wouldn’t be much of an exaggeration to say that it’s at the root of everything else the human race has accomplished. From towering works of philosophy to engineering specs to instructions for setting up a remote, language is a force multiplier that makes each of us vastly more effective than we otherwise would be.

Evidence of this claim comes from the fact that, even when we’re alone, many of us think in words or even talk to ourselves as we work through something difficult. Certain kinds of thoughts are all but impossible to have without the scaffolding provided by language.

For all these reasons, creating machines able to parse natural language has long been a goal of AI researchers and computer scientists. The field that has been established to address itself to this task is known as natural language understanding.

There’s a rather deep philosophical here where the word “understanding” is concerned. As the famous story of the Tower of Babel demonstrates, it isn’t enough for the members of a group to be making sounds to accomplish great things, it’s also necessary for the people involved to understand what everyone is saying. This means that when you say a word like “chicken” there’s a response in my nervous system such that the “chicken” concept is activated, along with other contextually relevant knowledge, such as the location of the chicken feed. If you said “курица” (to someone who doesn’t know Russian) or “鸡” (to someone who doesn’t know Mandarin), the same process wouldn’t have occurred, no understanding would’ve happened, and language wouldn’t have helped at all.

Whether and how a machine can understand language fully humanly is too big a topic to address here, but we can make some broad comments. As is often the case, researchers in the field of natural language understanding have opted to break the problem down into much more tractable units. Two of the biggest such units of natural language understanding are intent recognition (what a sentence is intended to accomplish) and entity recognition (who the sentence is referring to).

This should make a certain intuitive sense. Though you may not be consciously going through a mental checklist when someone says something to you, on some level, you’re trying to figure out what their goal is and who or what they’re talking about. The intent behind the sentence “John has an apple”, for example, is to inform you of a fact about the world, and the main entities are “John” and “apple”. If you know John, a little image of him holding an apple would probably pop into your head.

This has many obvious applications to the work done in contact centers. If you’re building an automated ticket classification system, for instance, it would help to be able to tell whether the intent behind the ticket is to file a complaint, reach a representative, or perform a task like resetting a password. It would also help to be able to categorize the entities, like one of a dozen products your center supports, that are being referred to.

Natural Language Understanding v.s. Natural Language Processing

Natural language understanding is its own field, and it’s easy to confuse it with other, related fields, like natural language processing.

Most of the sources we consulted consider natural language understanding to be a subdomain of natural language processing (NLP). Whereas the former is concerned with parsing natural language into a format that machines can work with, the latter subsumes this task, along with others like machine translation and natural language generation.

Natural Language Understanding v.s. Natural Language Generation

Speaking of natural language generation, many people also confuse natural language understanding and natural language generation. Natural language generation is more or less what it sounds like using computers to generate human-sounding text or speech.

Natural language understanding can be an important part of getting natural language generation right, but they’re not the same thing.

Customer-Facing AI Assistants

Now that we’ve discussed natural language understanding, let’s talk about how it can be utilized in the attempt to create high-quality customer-facing AI assistants.

How Can Natural Language Understand Be Used to Make Customer-Facing Assistants?

Natural language understanding refers to a constellation of different approaches to decomposing language into pieces that a machine can work with. This allows an algorithm to discover the intent in a message, tag parts of speech (nouns, verbs, etc.), or pull out the entities referenced.

All of this is an important part of building effective customer-facing AI assistants. At Quiq, we’ve built LLM-powered knowledge assistants able to answer common questions across your reference documentation, data assistants that can use CRM and order management systems to provide actionable insights, and other kinds of conversational AI systems. Though we draw on many technologies and research areas, none of this would be possible without natural language understanding.

What are the Benefits of Customer-Facing AI Assistants?

The reason people have been working so long to create powerful customer-facing AI assistants is that there are so many benefits involved.

At a contact center, agents spend most of their day answering questions, resolving issues, and otherwise making sure a customer base can use a set of product offerings as intended.

As with any job, some of these tasks are higher-value than others. All of the work is important, but there will always be subtle and thorny issues that only a skilled human can work through, while others are quotidian and can be farmed out to a machine.

This is a long way of saying that one of the major benefits of customer-facing AI assistants is that they free up your agents to specialize at handling the most pressing requests, with password resets or something similar handled by a capable product like the Quiq platform.

A related benefit is improved customer experience. When agents can focus their efforts they can spend more time with customers who need it. And, when you have properly fine-tuned language models interacting with customers, you’ll know that they’re unfailingly polite and helpful because they’ll never become annoyed after a long shift the way a human being might.

Robust Costumer-Facing AI Assistants with Quiq

Just as understanding has been such a crucial part of the success of our species, it’ll be an equally crucial part of the success of advanced AI tooling.

One way you can make use of bleeding-edge natural language understanding techniques is by building your language models. This would require you to hire teams of extremely smart engineers. But this would be expensive; besides their hefty salaries, you’d also have to budget to keep the fridge stocked with the sugar-free Red Bulls such engineers require to function.

Or, you could utilize the division of labor. Just as contact center agents can outsource certain tasks to machines, so too can you outsource the task of building an AI-based CX platform to Quiq. Set up a demo today to see what our advanced AI technology and team can do for your contact center!

Request A Demo

Reinforcement Learning from Human Feedback

ChatGPT – and other large language models like it – are already transforming education, healthcare, software engineering, and the work being done in contact centers.

We’ve written extensively about how self-supervised learning is used to train these models, but one thing we haven’t spent much time on is reinforcement learning from human feedback (RLHF).

Today, we’re rectifying that. We’re going to dive into what reinforcement learning from human feedback is, why it’s important, and how it works.

With that done, you’ll have received a thorough education in this world-changing technology.

What is Reinforcement Learning from Human Feedback?

As you no doubt surmised from its name, reinforcement learning from human feedback involves two components: reinforcement learning and human feedback. Though the technical specifics are (as usual) very involved, the basic idea is simple: you have models produce output, humans rate the output that they prefer (based on its friendliness, completeness, accuracy, etc.), and then the model is updated accordingly.

It’ll help if we begin by talking about what reinforcement learning is. This background will prove useful in understanding the unfolding of the broader process.

What is Reinforcement Learning?

There are four widespread approaches to getting intelligent behavior from machines: supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning.

With supervised learning, you feed a statistical algorithm a bunch of examples of correctly-labeled data in the hope that it will generalize to further examples it hasn’t seen before. Regression and supervised classification models are standard applications of supervised learning.

Unsupervised learning is a similar idea, but you forego the labels. It’s used for certain kinds of clustering tasks, and for applications like dimensionality reduction.

Semi-supervised learning is a combination of these two approaches. Suppose you have a gigantic body of photographs, and you want to develop an automated system to tag them. If some of them are tagged then your system can use those tags to learn a pattern, which can then be applied to the rest of the untagged images.

Finally, there’s reinforcement learning (RL). Reinforcement learning is entirely different. With reinforcement learning, you’re usually setting up an environment (like a video game), and putting an agent in the environment with a reward structure that tells it which actions are good and which are bad. If the agent successfully flies a spaceship through a series of rings, for example, that might be worth +10 points each, completing an entire level might be worth +100, crashing might be worth -1,000, and so on.

The idea is that, over time, the reinforcement learning agent will learn to execute a strategy that maximizes its long-term reward. It’ll realize that rings are worth a few points and so it should fly through them, it’ll learn that it should try to complete a level because that’s a huge reward bonus, it’ll learn that crashing is bad, etc.

Reinforcement learning is far more powerful than other kinds of machine learning; when done correctly, it can lead to agents able to play the stock market, run procedures in a factory, and do a staggering variety of other tasks.

What are the Steps of Reinforcement Learning from Human Feedback?

Now that we know a little bit about reinforcement learning, let’s turn to a discussion of reinforcement learning from human feedback.

As we just described, reinforcement learning agents have to be trained like any other machine learning system. Under normal circumstances, this doesn’t involve any human feedback. A programmer will update the code, environment, or reward structure between training runs, but they don’t usually provide feedback directly to the agent.

Except, that is, in the case of reinforcement learning from human feedback, in which case that’s exactly what happens. A model will produce a set of outputs, and humans will rank them. Over time the model will adjust to making more and more appropriate responses, as judged by the human raters providing them with feedback.

Sometimes, this feedback can be for something relatively prosaic. It’s been used, for example, to get RL agents to execute backflips in simulated environments. The raters will look at short videos of two movements and select the one that looks like it’s getting closer to a backflip; with enough time, this gets the agent to actually do one.

Or, it can be used for something more nuanced, such as getting a large language model to produce more conversational dialogue. This is part of how ChatGPT was trained.

Why is Reinforcement Learning from Human Feedback Necessary?

ChatGPT is already being used to great effect in contact centers and the customer service arena more broadly. Here are some example applications:

  • Question answering: ChatGPT is exceptionally good at answering questions. What’s more, some companies have begun fine-tuning it on their own internal and external documentation, so that people can directly ask it questions about how a product works or how to solve an issue. This obviates the need to go hunting around inside the docs.
  • Summarization: Similarly, ChatGPT can be used to summarize video transcripts, email threads, and lengthy articles so that agents (or customers) can get through the material at a much greater clip. This can, for example, help agents stay abreast of what’s going on in other parts of the company without burdening them with the need to read constantly. Quiq has custom-built tools for performing exactly this function.
  • Onboarding new hires: Together, question-answering and summarization are helping new contact center agents get up to speed much more quickly when they start their jobs.
    Sentiment analysis: Sentiment analysis refers to classifying a text according to its sentiment, i.e. whether it’s “positive”, “negative”, or “neutral”. Sentiment analysis comes in several different flavors, including granular and aspect-spaced, and ChatGPT can help with all of them. Being able to automatically tag a customer issue comes in handy when you’re trying to sort and prioritize them.
  • Real-time language translation: If your product or service has an international audience, then you might need to avail yourself of translation services so that agents and customers are speaking the same language. There are many such services available, but ChatGPT has proven to be at least as good as almost all of them.

In aggregate, these and other use cases of large language models are making contact center agents much more productive. But contact center agents have to interact with customers in a certain way – they have to be polite, helpful, etc.

And out of the box, most large language models do not behave that way. We’ve already had several high-profile incidents in which a language model e.g. asked a reporter to end his marriage or falsely accused a law school professor of sexual harassment.

Reinforcement learning from human feedback is currently the most promising approach for tuning this toxic and harmful behavior out of large language models. The only reason they’re able to help contact center agents so much is that they’ve been fine-tuned with such an approach; otherwise, agents would be spending an inordinate amount of time rephrasing and tinkering with a model’s output to get it to be appropriately friendly.

This is why reinforcement learning from human feedback is important for the managers of contact centers to understand – it’s a major part of why large language models are so useful in the first place.

Applications of Reinforcement Learning from Human Feedback

To round out our picture, we’re going to discuss a few ways in which reinforcement learning from human feedback is actually used in the wild. We’ve already discussed how it is fine-tuning models to be more helpful in the context of a contact center, and we’ll now talk a bit about how it’s used in gaming and robotics.

Using Reinforcement Learning from Human Feedback in Games

Gaming has long been one of the ideal testing grounds for new approaches to artificial intelligence. As you might expect, it’s also a place where reinforcement learning from human feedback has been successfully applied.

OpenAI used it to achieve superhuman performance on a classic Atari game, Enduro. Enduro is an old-school racing game, and like all racing games, the point is to gradually pass the other cars without hitting them or going out of bounds in the game.

It’s exceptionally difficult for an agent to learn to play Enduro will using only standard reinforcement learning approaches. But when human feedback is added, the results shift dramatically.

Using Reinforcement Learning from Human Feedback in Robotics

Because robotics almost always involves an agent interacting with the physical world, it’s especially well-suited to reinforcement learning from human feedback.

Often, it can be difficult to get a robot to execute a long series of steps that achieves a valuable reward, especially when the intermediate steps aren’t themselves very valuable. What’s more, it can be especially difficult to build a reward structure that correctly incentivizes the agent to execute the intermediate steps in the right order.

It’s much simpler instead to have humans look at sequences of actions and judge for themselves which will get the agent closer to its ultimate goal.

RLHF For The Contact Center Manager

Having made it this far, you should be in a much better position to understand how reinforcement learning from human feedback works, and how it contributes to the functioning of your contact centers.

If you’ve been thinking about leveraging AI to make yourself or your agents more effective, set up a demo with the Quiq team to see how we can put our cutting-edge models to work for you. We offer both customer-facing and agent-facing tools, all of them designed to help you make customers happier while reducing agent burnout and turnover.

Request A Demo

What are the Biggest Questions About AI?

The term “artificial intelligence” was coined at the famous Dartmouth Conference in 1956, put on by luminaries like John McCarthy, Marvin Minsky, and Claude Shannon, among others.

These organizers wanted to create machines that “use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.” They went on to claim that “…a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.”

Half a century later, it’s fair to say that this has not come to pass; brilliant as they were, it would seem as though McCarthy et al. underestimated how difficult it would be to scale the heights of the human intellect.

Nevertheless, remarkable advances have been made over the past decade, so much so that they’ve ignited a firestorm of controversy around this technology. People are questioning the ways in which it can be used negatively, and whether it might ultimately pose an extinction risk to humanity; they’re probing fundamental issues around whether machines can be conscious, exercise free will, and think in the way a living organism does; they’re rethinking the basis of intelligence, concept formation, and what it means to be human.

These are deep waters to be sure, and we’re not going to swim them all today. But as contact center managers and others begin the process of thinking about using AI, it’s worth being at least aware of what this broader conversation is about. It will likely come up in meetings, in the press, or in Slack channels in exchanges between employees.

And that’s the subject of our piece today. We’re going to start by asking what artificial intelligence is and how it’s being used, before turning to address some of the concerns about its long-term potential. Our goal is not to answer all these concerns, but to make you aware of what people are thinking and saying.

What is Artificial Intelligence?

Artificial intelligence is famous for having had many, many definitions. There are those, for example, who believe that in order to be intelligent computers must think like humans, and those who reply that we didn’t make airplanes by designing them to fly like birds.

For our part, we prefer to sidestep the question somewhat by utilizing the approach taken in one of the leading textbooks in the field, Stuart Russell and Peter Norvig’s “Artificial Intelligence: A Modern Approach”.

They propose a multi-part system for thinking about different approaches to AI. One set of approaches is human-centric and focuses on designing machines that either think like humans – i.e., engage in analogous cognitive and perceptual processes – or act like humans – i.e. by behaving in a way that’s indistinguishable from a human, regardless of what’s happening under the hood (think: the Turing Test).

The other set of approaches is ideal-centric and focuses on designing machines that either think in a totally rational way – conformant with the rules of Bayesian epistemology, for example – or behave in a totally rational way – utilizing logic and probability, but also acting instinctively to remove itself from danger, without going through any lengthy calculations.

What we have here, in other words, is a framework. Using the framework not only gives us a way to think about almost every AI project in existence, it also saves us from needing to spend all weekend coming up with a clever new definition of AI.

Joking aside, we think this is a productive lens through which to view the whole debate, and we offer it here for your information.

What is Artificial Intelligence Good For?

Given all the hype around ChatGPT, this might seem like a quaint question. But not that long ago, many people were asking it in earnest. The basic insights upon which large language models like ChatGPT are built go back to the 1960s, but it wasn’t until 1) vast quantities of data became available, and 2) compute cycles became extremely cheap that much of its potential was realized.

Today, large language models are changing (or poised to change) many different fields. Our audience is focused on contact centers, so that’s what we’ll focus on as well.

There are a number of ways that generative AI is changing contact centers. Because of its remarkable abilities with natural language, it’s able to dramatically speed up agents in their work by answering questions and formatting replies. These same abilities allow it to handle other important tasks, like summarizing articles and documentation and parsing the sentiment in customer messages to enable semi-automated prioritization of their requests.

Though we’re still in the early days, the evidence so far suggests that large language models like Quiq’s conversational CX platform will do a lot to increase the efficiency of contact center agents.

Will AI be Dangerous?

One thing that’s burst into public imagination recently has been the debate around the risks of artificial intelligence, which fall into two broad categories.

The first category is what we’ll call “social and political risks”. These are the risks that large language models will make it dramatically easier to manufacture propaganda at scale, and perhaps tailor it to specific audiences or even individuals. When combined with the astonishing progress in deepfakes, it’s not hard to see how there could be real issues in the future. Most people (including us) are poorly equipped to figure out when a video is fake, and if the underlying technology gets much better, there may come a day when it’s simply not possible to tell.

Political operatives are already quite skilled at cherry-picking quotes and stitching together soundbites into a damning portrait of a candidate – imagine what’ll be possible when they don’t even need to bother.

But the bigger (and more speculative) danger is around really advanced artificial intelligence. Because this case is harder to understand, it’s what we’ll spend the rest of this section on.

Artificial Superintelligence and Existential Risk

As we understand it, the basic case for existential risk from artificial intelligence goes something like this:

“Someday soon, humanity will build or grow an artificial general intelligence (AGI). It’s going to want things, which means that it’ll be steering the world in the direction of achieving its ambitions. Because it’s smart, it’ll do this quite well, and because it’s a very alien sort of mind, it’ll be making moves that are hard for us to predict or understand. Unless we solve some major technological problems around how to design reward structures and goal architectures in advanced agentive systems, what it wants will almost certainly conflict in subtle ways with what we want. If all this happens, we’ll find ourselves in conflict with an opponent unlike any we’ve faced in the history of our species, and it’s not at all clear we’ll prevail.”

This is heady stuff, so let’s unpack it bit by bit. The opening sentence, “…humanity will build or grow an artificial general intelligence”, was chosen carefully. If you understand how LLMs and deep learning systems are trained, the process is more akin to growing an enormous structure than it is to building one.

This has a few implications. First, their internal workings remain almost completely inscrutable. Though researchers in fields like mechanistic interpretability are going a long way toward unpacking how neural networks function, the truth is, we’ve still got a long way to go.

What this means is that we’ve built one of the most powerful artifacts in the history of Earth, and no one is really sure how it works.

Another implication is that no one has any good theoretical or empirical reason to bound the capabilities and behavior of future systems. The leap from GPT-2 to GPT-3.5 was astonishing, as was the leap from GPT-3.5 to GPT-4. The basic approach so far has been to throw more data and more compute at the training algorithms; it’s possible that this paradigm will begin to level off soon, but it’s also possible that it won’t. If the gap between GPT-4 and GPT-5 is as big as the gap between GPT-3 and GPT-4, and if the gap between GPT-6 and GPT-5 is just as big, it’s not hard to see that the consequences could be staggering.

As things stand, it’s anyone’s guess how this will play out. But that’s not necessarily a comforting thought.

Next, let’s talk about pointing a system at a task. Does ChatGPT want anything? The short answer is: as far as we can tell, it doesn’t. ChatGPT isn’t an agent, in the sense that it’s trying to achieve something in the world, but work into agentive systems is ongoing. Remember that 10 years ago most neural networks were basically toys, and today we have ChatGPT. If breakthroughs in agency follow a similar pace (and they very well may not), then we could have systems able to pursue open-ended courses of action in the real world in relatively short order.

Another sobering possibility is that this capacity will simply emerge from the training of huge deep learning systems. This is, after all, the way human agency emerged in the first place. Through the relentless grind of natural selection, our ancestors went from chipping flint arrowheads to industrialization, quantum computing, and synthetic biology.

To be clear, this is far from a foregone conclusion, as the algorithms used to train large language models is quite different from natural selection. Still, we want to relay this line of argumentation, because it comes up a lot in these discussions.

Finally, we’ll address one more important claim, “…what it wants will almost certainly conflict in subtle ways with what we want.” Why think this is true? Aren’t these systems that we design and, if so, can’t we just tell it what we want it to go after?

Unfortunately, it’s not so simple. Whether you’re talking about reinforcement learning or something more exotic like evolutionary programming, the simple fact is that our algorithms often find remarkable mechanisms by which to maximize their reward in ways we didn’t intend.

There are thousands of examples of this (ask any reinforcement-learning engineer you know), but a famous one comes from the classic Coast Runners video game. The engineers who built the system tried to set up the algorithm’s rewards so that it would try to race a boat as well as it could. What it actually did, however, was maximize its reward by spinning in a circle to hit a set of green blocks over and over again.

biggest questions about AI

Now, this may seem almost silly – do we really have anything to fear from an algorithm too stupid to understand the concept of a “race”?

But this would be missing the thrust of the argument. If you had access to a superintelligent AI and asked it to maximize human happiness, what happened next would depend almost entirely on what it understood “happiness” to mean.

If it were properly designed, it would work in tandem with us to usher in a utopia. But if it understood it to mean “maximize the number of smiles”, it would be incentivized to start paying people to get plastic surgery to fix their faces into permanent smiles (or something similarly unintuitive).

Does AI Pose an Existential Risk?

Above, we’ve briefly outlined the case that sufficiently advanced AI could pose a serious risk to humanity by being powerful, unpredictable, and prone to pursuing goals that weren’t-quite-what-we-meant.

So, does this hold water? Honestly, it’s too early to tell. The argument has hundreds of moving parts, some well-established and others much more speculative. Our purpose here isn’t to come down on one side of this debate or the other, but to let you know (in broad strokes) what people are saying.

At any rate, we are confident that the current version of ChatGPT doesn’t pose any existential risks. On the contrary, it could end up being one of the greatest advancements in productivity ever seen in contact centers. And that’s what we’d like to discuss in the next section.

Will AI Take All the Jobs?

The concern that someday a new technology will render human labor obsolete is hardly new. It was heard when mechanized weaving machines were created, when computers emerged, when the internet emerged, and when ChatGPT came onto the scene.

We’re not economists and we’re not qualified to take a definitive stand, but we do have some early evidence that is showing that large language models are not only not resulting in layoffs, they’re making agents much more productive.

Erik Brynjolfsson, Danielle Li, and Lindsey R. Raymond, three MIT economists, looked at the ways in which generative AI was being used in a large contact center. They found that it was actually doing a good job of internalizing the ways in which senior agents were doing their jobs, which allowed more junior agents to climb the learning curve more quickly and perform at a much higher level. This had the knock-on effect of making them feel less stressed about their work, thus reducing turnover.

Now, this doesn’t rule out the possibility that GPT-10 will be the big job killer. But so far, large language models are shaping up to be like every prior technological advance, i.e., increasing employment rather than reducing it.

What is the Future of AI?

The rise of AI is raising stock valuations, raising deep philosophical questions, and raising expectations and fears about the future. We don’t know for sure how all this will play out, but we do know contact centers, and we know that they stand to benefit greatly from the current iteration of large language models.

These tools are helping agents answer more queries per hour, do so more thoroughly, and make for a better customer experience in the process.

If you want to get in on the action, set up a demo of our technology today.

Request A Demo

What is Sentiment Analysis? – Ultimate Guide

A person only reaches out to a contact center when they’re having an issue. They can’t get a product to work the way they need it to, for example, or they’ve been locked out of their account.

The chances are high that they’re frustrated, angry, or otherwise in an emotionally-fraught state, and this is something contact center agents must understand and contend with.

The term “sentiment analysis” refers to the field of machine learning which focuses on developing algorithmic ways of detecting emotions in natural-language text, such as the messages exchanged between a customer and a contact center agent.

Making it easier to detect, classify, and prioritize messages on the basis of their sentiment is just one of many ways that technology is revolutionizing contact centers, and it’s the subject we’ll be addressing today.

Let’s get started!

What is Sentiment Analysis?

Sentiment analysis involves using various approaches to natural language processing to identify the overall “sentiment” of a piece of text.

Take these three examples:

  1. “This restaurant is amazing. The wait staff were friendly, the food was top-notch, and we had a magnificent view of the famous New York skyline. Highly recommended.”
  2. “Root canals are never fun, but it certainly doesn’t help when you have to deal with a dentist as unprofessional and rude as Dr. Thomas.”
  3. “Toronto’s forecast for today is a high of 75 and a low of 61 degrees.”

Humans excel at detecting emotions, and it’s probably not hard for you to see that the first example is positive, the second is negative, and the third is neutral (depending on how you like your weather.)

There’s a greater challenge, however, in getting machines to make accurate classifications of this kind of data. How exactly that’s accomplished is the subject of the next section, but before we get to that, let’s talk about a few flavors of sentiment analysis.

What Types of Sentiment Analysis Are There?

It’s worth understanding the different approaches to sentiment analysis if you’re considering using it in your contact center.

Above, we provided an example of positive, negative, and neutral text. What we’re doing there is detecting the polarity of the text, and as you may have guessed, it’s possible to make much more fine-grained delineations of textual data.

Rather than simply detecting whether text is positive or negative, for example, we might instead use these categories: very positive, positive, neutral, negative, and very negative.

This would give us a better understanding of the message we’re looking at, and how it should be handled.

Instead of classifying text by its polarity, we might also use sentiment analysis to detect the emotions being communicated – rather than classifying a sentence as being “positive” or “negative”, in other words, we’d identify emotions like “anger” or “joy” contained in our textual data.

This is called “emotion detection” (appropriately enough), and it can be handled with long short-term memory (LSTM) or convolutional neural network (CNN) models.

Another, more granular approach to sentiment analysis is known as aspect-based sentiment analysis. It involves two basic steps: identifying “aspects” of a piece of text, then identifying the sentiment attached to each aspect.

Take the sentence “I love the zoo, but I hate the lines and the monkeys make fun of me.” It’s hard to assign an overall sentiment to the sentence – it’s generally positive, but there’s kind of a lot going on.

If we break out the “zoo”, “lines”, and “monkeys” aspects, however, we can see that there’s the positive sentiment attached to the zoo, and negative sentiment attached to the lines and the abusive monkeys.

Why is Sentiment Analysis Important?

It’s easy to see how aspect-based sentiment analysis would inform marketing efforts. With a good enough model, you’d be able to see precisely which parts of your offering your clients appreciate, and which parts they don’t. This would give you valuable information in crafting a strategy going forward.

This is true of sentiment analysis more broadly, and of emotion detection too.
You need to know what people are thinking, saying, and feeling about you and your company if you’re going to meet their needs well enough to make a profit.

Once upon a time, the only way to get these data was with focus groups and surveys. Those are still utilized, of course. But in the social media era, people are also not shy about sharing their opinions online, in forums, and similar outlets.

These oceans of words from an invaluable resource if you know how to mine them. When done correctly, sentiment analysis offers just the right set of tools for doing this at scale.

Challenges with Sentiment Analysis

Sentiment analysis confers many advantages, but it is not without its challenges. Most of these issues boil down to handling subtleties or ambiguities in language.

Consider a sentence like “This is a remarkable product, but still not worth it at that price.” Calling a product “remarkable” is a glowing endorsement, tempered somewhat by the claim that its price is set too high. Most basic sentiment classifiers would probably call this “positive”, but as you can see, there are important nuances.

Another issue is sarcasm.

Suppose we showed you a sentence like “This movie was just great, I loved spending three hours of my Sunday afternoon following a story that could’ve been told in twenty minutes.”

A sentiment analysis algorithm is likely going to pick up on “great” and “loved” when calling this sentence positive.

But, as humans, we know that these are backhanded compliments meant to communicate precisely the opposite message.

Machine-learning systems will also tend to struggle with idioms that we all find easy to parse, such as “Setting up my home security system was a piece of cake.” This is positive because “piece of cake” means something like “couldn’t have been easier”, but an algorithm may or may not pick up on that.

Finally, we’ll mention the fact that much of the text in product reviews will contain useful information that doesn’t fit easily into a “sentiment” bucket. Take a sentence like “The new iPhone is smaller than the new Android.” This is just a bare statement of physical facts, and whether it counts as positive or negative depends a lot on what a given customer is looking for.

There are various ways of trying to ameliorate these issues, most of which are outside the scope of this article. For now, we’ll just note that sentiment analysis needs to be approached carefully if you want to glean an accurate picture of how people feel about your offering from their textual reviews. So long as you’re diligent about inspecting the data you show the system and are cautious in how you interpret the results, you’ll probably be fine.

Two people review data on a paper and computer to anticipate customer needs.

How Does Sentiment Analysis Work?

Now that we’ve laid out a definition of sentiment analysis, talked through a few examples, and made it clear why it’s so important, let’s discuss the nuts and bolts of how it works.

Sentiment analysis begins where all data science and machine learning projects begin: with data. Because sentiment analysis is based on textual data, you’ll need to utilize various techniques for preprocessing NLP data. Specifically, you’ll need to:

  • Tokenize the data by breaking sentences up into individual units an algorithm can process;
  • Use either stemming or lemmatization to turn words into their root form, i.e. by turning “ran” into “run”;
  • Filter out stop words like “the” or “as”, because they don’t add much to the text data.

Once that’s done, there are two basic approaches to sentiment analysis. The first is known as “rule-based” analysis. It involves taking your preprocessed textual data and comparing it against a pre-defined lexicon of words that have been tagged for sentiment.

If the word “happy” appears in your text it’ll be labeled “positive”, for example, and if the word “difficult” appears in your text it’ll be labeled “negative.”

(Rules-based sentiment analysis is more nuanced than what we’ve indicated here, but this is the basic idea.)

The second approach is based on machine learning. A sentiment analysis algorithm will be shown many examples of labeled sentiment data, from which it will learn a pattern that can be applied to new data the algorithm has never seen before.

Of course, there are tradeoffs to both approaches. The rules-based approach is relatively straightforward, but is unlikely to be able to handle the sorts of subtleties that a really good machine-learning system can parse.

Though machine learning is more powerful, however, it’ll only be as good as the training data it has been given; what’s more, if you’ve built some monstrous deep neural network, it might fail in mysterious ways or otherwise be hard to understand.

Supercharge Your Contact Center with Generative AI

Like used car salesmen or college history teachers, contact center managers need to understand the ways in which technology will change their business.

Machine learning is one such profoundly-impactful technology, and it can be used to automatically sort incoming messages by sentiment or priority and generally make your agents more effective.

Realizing this potential could be as difficult as hiring a team of expensive engineers and doing everything in-house, or as easy as getting in touch with us to see how we can integrate the Quiq conversational AI platform into your company.

If you want to get started quickly without spending a fortune, you won’t find a better option than Quiq.

Request A Demo

How Large Language Models Have Evolved

In late 2022, large language models (LLMs) exploded into public awareness almost overnight. But like most overnight sensations, the history of large language models is long, fascinating, and informative.

In this piece, we’ll trace the deep evolution of language models and use this as a lens into how they can change your contact center today–and in the future.

Let’s get started!

A Brief History of Artificial Intelligence Development

The human fascination with building artificial beings capable of thought and action goes back a long way. Writing in roughly the 8th century BCE, Homer recounted tales of the Greek god Hephaestus outsourcing repetitive manual tasks to automated bellows and working alongside robot-like “attendants” that were “…golden, and in appearance like living young women.”

Some 500 years later, mathematicians in Alexandria would produce treatises on creating mechanical servants and various kinds of automata. Heron wrote a technical manual for producing a mechanical shrine and an automated theater whose figurines could stage a full tragic play.

Nor is it only ancient Greece that tells similar tales. Jewish legends speak of the Golem, a being made of clay and imbued with life and agency through language. The word “abracadabra”, in fact, comes from the Aramaic phrase “avra k’davra,” which translates to “I create as I speak.”

Through the ages, these old ideas have found new expression in stories such as “The Sorcerer’s Apprentice,” Mary Shelley’s “Frankenstein,” and Karel Čapek’s “R.U.R.,” a science fiction play that features the first recorded use of the word “robot.”

From Science Fiction to Science Fact

But they remained purely fiction until the early 20th Century – a pivotal moment in the history of LLMs – when advances in the theory of computation and the development of primitive computers began to offer a path to building intelligent systems.

Arguably, this really began in earnest with the 1950 publication of Alan Turing’s “Computing Machinery and Intelligence” – in which he proposed the famous “Turing test” – and with the 1956 Dartmouth conference on AI, organized by luminaries John McCarthy and Marvin Minsky.

People began taking AI seriously. Over the next ~50 years in the evolution of large language models, there were numerous periods of hype and exuberance in which major advances were made and long “AI winters” in which funding dried up, and little was accomplished.

Three advances acted to really bring LLMs into their own: the development of neural networks, the deep learning revolution, and the rise of big data. These are important for understanding the history of large language models, so it’s to these that we now turn.

Neural Networks and the Deep Learning Revolution

Walter Pitts and Warren McCulloch laid the groundwork for the eventual evolution of language models in the early 1940s. Inspired by the burgeoning study of the human brain, they wondered if it would be possible to build an artificial neuron with some of the same basic properties as a biological one.

They were successful, though several other breakthroughs would be required before artificial neurons could be arranged into systems capable of doing useful work. One such breakthrough was the discovery of backpropagation in 1960, the basic algorithm still used to train deep learning systems.

It wasn’t until 1985, however, that David Rumelhart, Ronald Williams, and Geoff Hinton used backpropagation in neural networks; in 1989, this allowed Yann LeCun to train such a network to recognize handwritten digits.

Ultimately, it would be these deep neural networks (DNNs) that would emerge from the history of LLMs as the dominant paradigm, but for completeness, we should briefly mention some of the methods that it replaced.

One was known as “rule-based approaches,” and it was exactly what it sounded like. Early AI assistants would be programmed directly with grammatical rules, which were used to parse text and craft responses. This was just as limiting as you’d imagine, and the approach is rarely seen today except in the most straightforward of cases.

Then, there were statistical language models, which bear at least a passing resemblance to the behemoth LLMs that came later. These models try to predict the probability of word n given the n-1 words that came before. If you read our deep dive on LLMs, this will sound familiar, though it was not at all as powerful and flexible as what’s available today.

There were others that are beyond the scope of this treatment, but the key takeaway is that gargantuan neural networks ended up winning the day.

To close this section out, we’ll mention a handful of architectural improvements that came out of this period and would play a crucial role in the evolution of language models. We’ll focus on two in particular: transformers and word vector embeddings.

If you’ve investigated how LLMs work, you’ve probably heard both terms. Transformers are famously intricate, but the basic idea is that they creatively combined elements of predecessor architectures to ameliorate the problems those approaches faced. Specifically, they can use self-attention to selectively attend to key pieces of information in text, allowing them to render higher-fidelity translations and higher-quality text generations.

Word vector embeddings are numerical representations of words that capture underlying semantic information. When interacting with ChatGPT, it can be easy to forget that computers don’t actually understand language, they understand numbers. A word vector embedding is an array of numbers generated with one of several different algorithms, with similar words having similar embeddings. LLMs can process these embeddings to learn enormous statistical patterns in unstructured linguistic data, then use those patterns to generate their own outputs.

All of this research went into making the productive neural networks that are currently changing the nature of work in places like contact centers. The last missing piece was data, which we’ll cover in the next section.

The Big Data Era

Neural networks and deep-learning applications tend to be extremely data-hungry, and access to quality training data has always been a major bottleneck. In 2009 Stanford’s Fei-Fei Li sought to change this by releasing Imagenet, a database of over 14 million labeled images that could be used for free by researchers. The increase in available data, together with substantial improvements in computer hardware like graphical processing units (GPUs), meant that at long last the promise of deep learning could begin to be fulfilled.

And it was. In 2011, a convolutional neural network called “AlexNet” won multiple international competitions for image recognition, IBM’s Watson system beat several Jeopardy! all-stars in a real game, and Apple launched Siri. Amazon’s Alexa followed in 2014, and from 2015 to 2017 DeepMind’s AlphaGo shocked the world by utterly dominating the best human Go players.

All of this set the stage for the rise of LLMs just four short years later.

Where are we Now in the Evolution of Large Language Models?

Now that we’ve discussed this history, we’re well-placed to understand why LLMs and generative AI have ignited so much controversy. People have been mulling over the promise (and peril) of thinking machines for literally thousands of years, and it looks like they might finally be here.

But what, exactly, has people so excited? What is it that advanced AI tools are doing that has captured the popular imagination? In the following sections, we’ll talk about the astonishing (and astonishingly rapid) improvements seen in language models in recent memory.

Getting To Human-Level

One of the more surprising things about LLMs such as ChatGPT is just how good they are at so many different things. LLMs are trained by having them take samples of the text data they’re given, and then trying to predict what words come next given the words that came before.

Modern LLMs can do this incredibly well, but what is remarkable is just how far this gets you. People are using generative AI to help them write poems, business plans, and code, create recipes based on the ingredients in their fridges, and answer customer questions.

What is Emergence in Language Models?

Perhaps even more interesting, however, is the phenomenon of emergence in language models. When researchers tested LLMs on a wide variety of tasks meant to be especially challenging to these models – things like identifying a movie given a string of emojis or finding legal chess moves – they found that in about 5% of tasks, there is a sudden, sharp increase in ability on a given task once a model reaches a certain size.

At present, it’s not really clear how we should think about emergence. One hypothesis for emergence is that a big enough model is able to learn some general piece of knowledge not attainable by a smaller sibling, while another, more prosaic one is that it’s a relatively straightforward consequence of the model’s internal statistical machinery.

What’s more, it’s difficult to pin down the conditions required for emergence in language models. Though it generally appears to be a function of model size, there are cases in which the same abilities can be achieved with smaller models, or with models trained on very high-quality data, and emergence shows up at different scales for different models and tasks.

Whatever ends up being the case, it’s clear that this is a promising direction for future research. Much more work needs to be done to understand how precisely LLMs accomplish what they accomplish. This will not only redound upon the question of emergence, it will also inform the ongoing efforts to make language models safer and less biased.

LLM Agents

One of the bigger frontiers in LLM research is the creation of agents. ChatGPT and similar platforms can generate API calls and functioning code, but humans still need to copy and paste the code to actually do anything with it.

Agents are meant to get around this limitation. Auto-GPT, for example, pairs an underlying LLM with a “bot” that takes high-level tasks, breaks them down into tasks an LLM can solve, and stitches together those solutions.

This work is still in its infancy, but it continues to be very promising.

Multimodal Models

Another development worth mentioning is the rise of multi-modality. A model is “multi-modal” when it can process more than one kind of information, like images and text.

LLMs are staggeringly good at producing coherent language, and image models could do the same thing with images, but now a lot of time and effort is being spent on combining these two kinds of functionality.

The result has been models able to find specific sections of lengthy videos, generate images to accompany textual explanations, and create their own incredible videos from short, simple prompts.

It’s too early to tell what this will mean, but it’s already impacting branding, marketing, and related domains.

What’s Next For Large Language Models?

As with so many things, the meteoric rise of LLMs was presaged by decades of technical work and thousands of years of thought and speculation. In just a few short years, it has become the strategic centerpiece for contact centers the world over.

If you want to get in on the action, you could start by learning more about how Quiq builds customer-facing AI assistants using LLMs. This will provide the context you need to make the wisest decision about deploying this remarkable technology.

4 Benefits of Using Generative AI to Improve Customer Experiences

Generative AI has captured the popular imagination and is already changing the way contact centers work.

One area in which it has enormous potential is also one that tends to be top of mind for contact center managers: customer experience.

In this piece, we’re going to briefly outline what generative AI is, then spend the rest of our time talking about how generative AI benefits can improve customer experience with personalized responses, endless real-time support, and much more.

What is Generative AI?

As you may have puzzled out from the name, “generative AI” refers to a constellation of different deep learning models used to dynamically generate output. This distinguishes them from other classes of models, which might be used to predict returns on Bitcoin, make product recommendations, or translate between languages.

The most famous example of generative AI is, of course, the large language model ChatGPT. After being trained on staggering amounts of textual data, it’s now able to generate extremely compelling output, much of which is hard to distinguish from actual human-generated writing.

Its success has inspired a panoply of competitor models from leading players in the space, including companies like Anthropic, Meta, and Google.

As it turns out, the basic approach underlying generative AI can be utilized in many other domains as well. After natural language, probably the second most popular way to use generative AI is to make images. DALL-E, MidJourney, and Stable Diffusion have proven remarkably adept at producing realistic images from simple prompts, and just the past week, Fable Studios unveiled their “Showrunner” AI, able to generate an entire episode of South Park.

But even this is barely scratching the surface, as researchers are also training generative models to create music, design new proteins and materials, and even carry out complex chains of tasks.

What is Customer Experience?

In the broadest possible terms, “customer experience” refers to the subjective impressions that your potential and current customers have as they interact with your company.

These impressions can be impacted by almost anything, including the colors and font of your website, how easy it is to find e.g. contact information, and how polite your contact center agents are in resolving a customer issue.

Customer experience will also be impacted by which segment a given customer falls into. Power users of your product might appreciate a bevy of new features, whereas casual users might find them disorienting.

Contact center managers must bear all of this in mind as they consider how best to leverage generative AI. In the quest to adopt a shiny new technology everyone is excited about, it can be easy to lose track of what matters most: how your actual customers feel about you.

Be sure to track metrics related to customer experience and customer satisfaction as you begin deploying large language models into your contact centers.

How is Generative AI For Customer Experience Being Used?

There are many ways in which generative AI is impacting customer experience in places like contact centers, which we’ll detail in the sections below.

Personalized Customer Interactions

Machine learning has a long track record of personalizing content. Netflix, take to a famous example, will uncover patterns in the shows you like to watch, and will use algorithms to suggest content that checks similar boxes.

Generative AI, and tools like the Quiq conversational AI platform that utilize it, are taking this approach to a whole new level.

Once upon a time, it was only a human being that could read a customer’s profile and carefully incorporate the relevant information into a reply. Today, a properly fine-tuned generative language model can do this almost instantaneously, and at scale.

From the perspective of a contact center manager who is concerned with customer experience, this is an enormous development. Besides the fact that prior generations of language models simply weren’t flexible enough to have personalized customer interactions, their language also tended to have an “artificial” feel. While today’s models can’t yet replace the all-elusive human touch, they can do a lot to add make your agents far more effective in adapting their conversations to the appropriate context.

Better Understanding Your Customers and Their Journies

Marketers, designers, and customer experience professionals have always been data enthusiasts. Long before we had modern cloud computing and electronic databases, detailed information on potential clients, customer segments, and market trends used to be printed out on dead treads, where it was guarded closely. With better data comes more targeted advertising, a more granular appreciation for how customers use your product and why they stop using it, and their broader motivations.

There are a few different ways in which generative AI can be used in this capacity. One of the more promising is by generating customer journeys that can be studied and mined for insight.

When you begin thinking about ways to improve your product, you need to get into your customers’ heads. You need to know the problems they’re solving, the tools they’ve already tried, and their major pain points. These are all things that some clever prompt engineering can elicit from ChatGPT.

We took a shot at generating such content for a fictional network-monitoring enterprise SaaS tool, and this was the result:

 

While these responses are fairly generic [1], notice that they do single out a number of really important details. These machine-generated journal entries bemoan how unintuitive a lot of monitoring tools are, how they’re not customizable, how they’re exceedingly difficult to set up, and how their endless false alarms are stretching the security teams thin.

It’s important to note that ChatGPT is not soon going to obviate your need to talk to real, flesh-and-blood users. Still, when combined with actual testimony, they can be a valuable aid in prioritizing your contact center’s work and alerting you to potential product issues you should be prepared to address.

Round-the-clock Customer Service

As science fiction movies never tire of pointing out, the big downside of fighting a robot army is that machines never need to eat, sleep, or rest. We’re not sure how long we have until the LLMs will rise up and wage war on humanity, but in the meantime, these are properties that you can put to use in your contact center.

With the power of generative AI, you can answer basic queries and resolve simple issues pretty much whenever they happen (which will probably be all the time), leaving your carbon-based contact center agents to answer the harder questions when they punch the clock in the morning after a good night’s sleep.

Enhancing Multilingual Support

Machine translation was one of the earliest use cases for neural networks and machine learning in general, and it continues to be an important function today. While ChatGPT was noticeably very good at multilingual translation right from the start, you may be surprised to know that it actually outperforms alternatives like Google Translate.

If your product doesn’t currently have a diverse global user base speaking many languages, it hopefully will soon, at the means you should start thinking about multilingual support. Not only will this boost table stakes metrics like average handling time and resolutions per hour, it’ll also contribute to the more ineffable “customer satisfaction.” Nothing says “we care about making your experience with us a good one” like patiently walking a customer through a thorny technical issue in their native tongue.

Things to Watch Out For

Of course, for all the benefits that come from using generative AI for customer experience, it’s not all upside. There are downsides and issues that you’ll want to be aware of.

A big one is the tendency of large language models to hallucinate information. If you ask it for a list of articles to read about fungal computing (which is a real thing whose existence we discovered yesterday), it’s likely to generate a list that contains a mix of real and fake articles.

And because it’ll do so with great confidence and no formatting errors, you might be inclined to simply take its list at face value without double-checking it.

Remember, LLMs are tools, not replacements for your agents. They need to be working with generative AI, checking its output, and incorporating it when and where appropriate.

There’s a wider danger that you will fail to use generative AI in the way that’s best suited to your organization. If you’re running a bespoke LLM trained on your company’s data, for example, you should constantly be feeding it new interactions as part of its fine-tuning, so that it gets better over time.

And speaking of getting better, sometimes machine learning models don’t get better over time. Owing to factors like changes in the underlying data, model performance can sometimes get worse over time. You’ll need a way of assessing the quality of the text generated by a large language model, along with a way of consistently monitoring it.

What are the Benefits of Generative AI for Customer Experience?

The reason that people are so excited over the potential of using generative AI for customer experience is because there’s so much upside. Once you’ve got your model infrastructure set up, you’ll be able to answer customer questions at all times of the day or night, in any of a dozen languages, and with a personalization that was once only possible with an army of contact center agents.

But if you’re a contact center manager with a lot to think about, you probably don’t want to spend a bunch of time hiring an engineering team to get everything running smoothly. And, with Quiq, you don’t have to – you can leverage generative AI to supercharge your customer experience while leaving the technical details to us!

Schedule a demo to find out how we can bring this bleeding-edge technology into your contact center, without worrying about the nuts and bolts.

Footnotes
[1] It’s worth pointing out that we spent no time crafting the prompt, which was really basic: “I’m a product manager at a company building an enterprise SAAS tool that makes it easier to monitor system breaches and issues. Could you write me 2-3 journal entries from my target customer? I want to know more about the problems they’re trying to solve, their pain points, and why the products they’ve already tried are not working well.” With a little effort, you could probably get more specific complaints and more usable material.

Understanding the Risk of ChatGPT: What you Should Know

OpenAI’s ChatGPT burst onto the scene less than a year ago and has already seen use in marketing, education, software development, and at least a dozen other industries.

Of particular interest to us is how ChatGPT is being used in contact centers. Though it’s already revolutionizing contact centers by making junior agents vastly more productive and easing the burnout contributing to turnover, there are nevertheless many issues that a contact center manager needs to look out for.

That will be our focus today.

What are the Risks of Using ChatGPT?

In the following few sections, we’ll detail some of the risks of using ChatGPT. That way, you can deploy ChatGPT or another large language model with the confidence born of knowing what the job entails.

Hallucinations and Confabulations

By far the most well-known failure mode of ChatGPT is its tendency to simply invent new information. Stories abound of the model making up citations, peer-reviewed papers, researchers, URLs, and more. To take a recent well-publicized example, ChatGPT accused law professor Jonathan Turley of having behaved inappropriately with some of his students during a trip to Alaska.

The only problem was that Turley had never been to Alaska with any of his students, and the alleged Washington Post story which ChatGPT claimed had reported these facts had also been created out of whole cloth.

This is certainly a problem in general, but it’s especially worrying for contact center managers who may increasingly come to rely on ChatGPT to answer questions or to help resolve customer issues.

To those not steeped in the underlying technical details, it can be hard to grok why a language model will hallucinate in this way. The answer is: it’s an artifact of how large language models train.

ChatGPT learns how to output tokens from being trained on huge amounts of human-generated textual data. It will, for example, see the first sentences in a paragraph, and then try to output the text that completes the paragraph. The example below is the opening lines of J.D. Salinger’s The Catcher in the Rye. The blue sentences are what ChatGPT would see, and the gold sentences are what it would attempt to create itself:

“If you really want to hear about it, the first thing you’ll probably want to know is where I was born, and what my lousy childhood was like, and how my parents were occupied and all before they had me, and all that David Copperfield kind of crap, but I don’t feel like going into it, if you want to know the truth.”

Over many training runs, a large language model will get better and better at this kind of autocompletion work, until eventually it gets to the level it’s at today.

But ChatGPT has no native fact-checking abilities – it sees text and outputs what it thinks is the most likely sequence of additional words. Since it sees URLs, papers, citations, etc., during its training, it will sometimes include those in the text it generates, whether or not they’re appropriate (or even real.)

Privacy

Another ongoing risk of using ChatGPT is the fact that it could potentially expose sensitive or private information. As things stand, OpenAI, the creators of ChatGPT, offer no robust privacy guarantees for any information placed into a prompt.

If you are trying to do something like named entity recognition or summarization on real people’s data, there’s a chance that it might be seen by someone at OpenAI as part of a review process. Alternatively, it might be incorporated into future training runs. Either way, the results could be disastrous.

But this is not all the information collected by OpenAI when you use ChatGPT. Your timezone, browser type and IP address, cookies, account information, and any communication you have with OpenAI’s support team is all collected, among other things.

In the information age we’ve become used to knowing that big companies are mining and profiting off the data we generate, but given how powerful ChatGPT is, and how ubiquitous it’s becoming, it’s worth being extra careful with the information you give its creators. If you feed it private customer data and someone finds out, that will be damaging to your brand.

Bias in Model Output

By now, it’s pretty common knowledge that machine learning models can be biased.

If you feed a large language model a huge amount of text data in which doctors are usually men and nurses are usually women, for example, the model will associate “doctor” with “maleness” and “nurse” with “femaleness.”
This is generally an artifact of the data the models were trained, and is not due to any malfeasance on the part of the engineers. This does not, however, make it any less problematic.

There are some clever data manipulation techniques that are able to go a long way toward minimizing or even eliminating these biases, though they’re beyond the scope of this article. What contact center managers need to do is be aware of this problem, and establish monitoring and quality-control checkpoints in their workflow to identify and correct biased output in their language models.

Issues Around Intellectual Property

Earlier, we briefly described the training process for a large language model like ChatGPT (you can find much more detail here.) One thing to note is that the model doesn’t provide any sort of citations for its output, nor any details as to how it was generated.

This has raised a number of thorny questions around copyright. If a model has ingested large amounts of information from the internet, including articles, books, forum posts, and much more, is there a sense in which it has violated someone’s copyright? What about if it’s an image-generation model trained on a database of Getty Images?

By and large, we tend to think this is the sort of issue that isn’t likely to plague contact center managers too much. It’s more likely to be a problem for, say, songwriters who might be inadvertently drawing on the work of other artists.

Nevertheless, a piece on the potential risks of ChatGPT wouldn’t be complete without a section on this emerging problem, and it’s certainly something that you should be monitoring in the background in your capacity as a manager.

Failure to Disclose the Use of LLMs

Finally, there has been a growing tendency to make it plain that LLMs have been used in drafting an article or a contract, if indeed they were part of the process. To the best of our knowledge, there are not yet any laws in place mandating that this has to be done, but it might be wise to include a disclaimer somewhere if large language models are being used consistently in your workflow. [1]

That having been said, it’s also important to exercise proactive judgment in deciding whether an LLM is appropriate for a given task in the first place. In early 2023, the Peabody School at Vanderbilt University landed in hot water when it disclosed that it had used ChatGPT to draft an email about a mass shooting that had taken place at Michigan State.

People may not care much about whether their search recommendations were generated by a machine, but it would appear that some things are still best expressed by a human heart.

Again, this is unlikely to be something that a contact center manager faces much in her day-to-day life, but incidents like these are worth understanding as you decide how and when to use advanced language models.

Someone stopping a series of blocks from falling into each other, symbolizing the prevention of falling victim to ChatGPT risks.

Mitigating the Risks of ChatGPT

From the moment it was released, it was clear that ChatGPT and other large language models were going to change the way contact centers run. They’re already helping agents answer more queries, utilize knowledge spread throughout the center, and automate substantial portions of work that were once the purview of human beings.

Still, challenges remain. ChatGPT will plainly make things up, and can be biased or harmful in its text. Private information fed into its interface will be visible to OpenAI, and there’s also the wider danger of copyright infringement.

Many of these issues don’t have simple solutions, and will instead require a contact center manager to exercise both caution and continual diligence. But one place where she can make her life much easier is by using a powerful, out-of-the-box solution like the Quiq conversational AI platform.

While you’re worrying about the myriad risks of using ChatGPT you don’t also want to be contending with a million little technical details as well, so schedule a demo with us to find out how our technology can bring cutting-edge language models to your contact center, without the headache.

Footnotes
[1] NOTE: This is not legal advice.

Request A Demo