6 Amazing Examples of how AI is Changing Hospitality

Recent advances in AI are poised to bring many changes. Though we’re still in the early days of seeing how all this plays out, there’s already clear evidence that generative AI is having a measurable impact in places like contact centers. Looking into the future a bit, multiple reports indicate that AI could add trillions of dollars to the economy before the close of the 2020s, and lead to as much as a doubling in rates of yearly economic growth over the next decade.

The hospitality industry has always been forward-looking, eager to adopt new best practices and technologies. If you’re working in hospitality now, therefore, you might be wondering what AI will mean for you, and what the benefits of AI will be.

That’s exactly what we’re setting out to answer in this article! Below, we’ve collected several of our favorite use cases of AI assistants in both hospitality and travel. Throughout, we’ve tried to anchor the discussion to real-world examples. We hope that, by the end, you’ll feel much better equipped to evaluate whether and how to use AI assistants in your own operations.

Let’s get going!

What is AI in Hospitality and Travel?

The term “artificial intelligence” covers a huge number of topics, approaches, and subdomains, most of which we won’t be able to cover here. But broadly, you can think of AI as being any attempt to train a machine to do useful work.

Two of the more popular methods for accomplishing this task are machine learning and generative AI, the latter of which has become famous due to the recent spectacular successes of large language models.

These are also the methods we’ll be focused on because they’re the ones most commonly used in hospitality. Machine learning, for example, will pop up in examples of dynamic pricing and demand forecasting, while generative AI is a key engine driving advances in automated concierge services.

6 Ways AI Assistants are Transforming Hospitality and Travel

Below, we’ve collected some of the most compelling use cases of AI assistants in the hospitality and travel industry. We’ll begin with their use in educating the rising generation of hospitality professionals, then move on to HR, operations, revenue, and all the other things that go into keeping guests happy!

Use Case #1 – Educating Future Hospitality Professionals

From personalized lesson plans to software-based tutors, applying artificial intelligence to education has long been a dream. This is no different for hospitality, where rising students are using the latest and greatest tools to accelerate their learning.

Students have to figure out how to comport themselves in a variety of challenging circumstances, from interactions at the front desk to ensuring the room service makes it to the right guest. When augmented with artificial intelligence, simulations can help students gain exposure to many of the issues they’ll face in their day-to-day work.

Generative AI, for example, can be used to practice and internalize strategies for dealing with guests who are distraught or downright rude. It can also be used as a general learning tool, helping to break down complex concepts, structure study routines, and more.

Use Case #2 – Hiring and Staffing

Like all businesses, hotels, resorts, and other hospitality staples have to deal with hiring. Talent acquisition is a major unsolved challenge; it can take a long time to find a good hire for a position, and mistakes can cost a lot in terms of time, energy, and money.

This, too, is a place where machine learning can help. A prominent example is Hilton, which has begun using bespoke algorithms to fill its positions. These algorithms can ingest a huge amount of information on the skills and experiences of a set of potential candidates, build profiles for them, and then measure this against the profiles of employees who have been successful in the past. This allows Hilton to better gauge how well these candidates will ultimately be able to live up to the rigors of different roles.

With this approach, Hilton has been able to fill empty positions in as little as a week, all while cutting its turnover in half. Not only does this save a great deal of time for hiring managers and recruiters, it also reduces delays and helps to build a more robust company culture.

This last point warrants a little elaboration. When employees stay with a company for a long time, they gain a very intuitive grasp of its internal workings. When they leave, they take this knowledge with them, and it can take a long time to rebuild. If AI is able to more efficiently find and place candidates, it means that an organization will function better in a thousand little ways, leading to an improved guest experience and more success in the long term.

Use Case #3 – Hotel Operations Management

Hotels have many moving parts. Keeping all the proverbial plates spinning is known as “operations,” and can involve anything from changing a reservation to fielding questions to making sure all the thermostats are functional.

Though much of this still requires the human touch, artificial intelligence can do a lot to lighten the load by automating routine parts of the job. Take booking, for example. It can be complicated, but in many cases, today’s AI assistants are more than capable of helping.

What might that look like? Consider an example of a potential guest who has questions about your amenities. They might want to know whether you have any special programs for kids, whether you have pool-side food service, etc. These are all things that a question-answering AI assistant could help with.

If we assume the guest has decided to book with you, they may later want to change their reservation by a few days. Or, after their stay, they may run into billing issues that need to be reconciled. These are both tasks that are often within the capacity of today’s systems.

This is appealing because it’ll save you time, yes, but there are more opportunities here than may be apparent at first. The Maison Mere hotel in Paris, for example, made the decision to use a contactless check-in service that allowed them to collect little details about their guests before they arrived. Afterward, they used that information to create custom touches in those guest’s rooms, such as personalized greetings and flowers. What’s more, it gave Maison Mere a chance to take advantage of targeted upselling opportunities; guests traveling with pets were offered pet kits, and promotions through the platform led to a boost in reservations at the hotel’s attached restaurant, to name but a few.

Returning to amenities, if you’ve worked in hospitality before, you’ve probably dealt with snack requests, towel deliveries, etc. In Silicon Valley, Crowne Plaza has begun rolling out a robotic system called “Dash” to outsource exactly these kinds of low-level tasks. Dash uses Wi-Fi to move around the hotel, locate guests, and deliver the requested items. It’s even able to check its own battery supply and recharge when it starts running low.

Use Case #4 – Hotel Revenue Management

Like all businesses, hotels exist to make money, and they therefore tend to keep a pretty close eye on their revenue. This might be one of the responsibilities you assume as a hospitality specialist, so it’s worth understanding how AI assistants will impact hotel revenue management.

Some of these developments have been in motion for a while. One tried-and-true technique for maximizing revenue is to better forecast future demand. Unfortunately, most hotels are not booked solid year round, there’ll be periods of extremely high activity and periods of relatively low activity. But these fluctuations aren’t random, and with the right machine learning algorithms, past historical data can be mined to arrive at a pretty accurate picture of when you’re going to be full. This allows you to better plan your inventory, for example, and have all the staff required to ensure everyone enjoys their stay.

For the same reason, many hotels choose to vary their prices based on demand. Premium suites might go for $500 a night in the busy season while commanding a much more affordable $200 a night when no one is visiting.

There exist many AI tools to help with this work, and they’re getting good results. In Thailand, the Narai Hospitality Group utilized a pricing and forecasting platform to grow their average daily rate by more than a quarter, even tripling the rates charged on some rooms during peak traffic months. Grand America Hotels & Resorts was similarly able to keep their revenue management lean and effective as they navigated the post-COVID travel boom using automation-powered software.

Use Case #5 – Marketing and Sales

Another thing the hospitality industry has in common with other industries is that it has to market its services—after all, no one can stay in a hotel they haven’t heard of. Using AI assistants for marketing purposes is hardly new, but there are some exciting developments where hospitality is concerned.

By using an AI-powered marketing intelligence service that dynamically personalizes offerings with real-time data, the U.K.’s Cheval Collection achieved an 82% revenue growth in 2023, compared to just three years prior.

Use Case #6 – Hotel Guest Experience in the AI Age

Above, we’ve discussed operations, revenue, hiring, and all the myriad aspects of running a successful hospitality enterprise. But perhaps the most important part of this process is the one we’ve saved for last: how much people enjoy actually staying with you.

This is generally known as “guest experience,” and it, too, is likely to be disrupted by the widespread use of AI assistants. Consider the example of “Rose,” an AI concierge used by Las Vegas’s Cosmopolitan hotel. When a guest checks in to the Cosmopolitan, they are given a number where they can contact Rose. They can text her if they have requests or call and talk to her if they prefer a voice interface.

Of course, it’s not hard to forecast some of the other ways AI could power an enhanced guest experience. Continuing with the concierge example, imagine smart AI assistants in each guest’s room, offering up recommendations for local restaurants or fun excursions. Since AI has made great strides in personalization, these assistants would be far from generic; they’d be able to utilize information about a guest’s preferences, prior experiences, online profiles or reviews, etc., to offer nuanced, highly-tailored advice.

If you have such a system operational in your hotel, it’s unlikely to be a thing your guests will forget.

Exploring AI in Hospitality: Industry Examples Unveiled

From large language models to machine learning to agentic systems, we’re living in something of a turning point for artificial intelligence. Today’s systems are far from perfect, but they’re clearly capable of doing economically useful work, in the hospitality industry and elsewhere.

But there remain many challenges, not least of which is working with an AI assistant platform you can trust. Quiq is a leader in the conversational AI space, and can help you integrate this cutting-edge technology into your business. Get in touch today to schedule a demo and see how we can help!

Request A Demo

Why Your Business Should Use Rich Messaging

A Brief Overview of Rich Messaging

Along with Eminem and Auto-Tune, text messaging was just becoming really popular back in the halcyon days of the early 2000s. It was a simpler time, and all our texts were sent via “short message service” (SMS), which was mostly confined to words. This was cutting-edge technology back then, and since we weren’t yet expressing ourselves with walls of hieroglyphic emojis or GIFs from Schitt’s Creek, it was all we needed.

Today, this is no longer the case. We’re spending much more time communicating with each other through text messaging and sending much more complicated information, to boot. In response, rich messaging was developed.

Technically known as “rich communication services” (RCS), rich messaging is the next step in the evolution of text messaging. It allows for better use of interactive media, such as high-resolution photos, messaging cards, audio messages, emojis, and GIFs. Even more important for those of us in the contact center industry, it also facilitates an enhanced customer experience, with things like sensory-rich service interactions.

Capabilities of Rich Messaging

Having covered rich messaging, let’s explore some of its vistas. While this is not a comprehensive list, it reflects what we believe to be some of RCS’s most important properties (especially from the perspective of those looking to leverage text messaging for contact centers).

Integrating with Other Services

Today, the rise of generative AI is changing how contact centers work, which also presents an opportunity for integration.

If your business is looking to integrate AI assistants to automate substantial parts of its customer service workflow, you’re almost certainly going to have to do that through rich messaging.

Secure Messaging and Transactions Processing

Big data and AI have both raised serious concerns over privacy. A decade ago, people wouldn’t have thought twice about sharing their location or putting pictures of their kids online. These days, however, more of us are privacy- and security-conscious, so the fact that rich messaging supports end-to-end encryption is important.

People are much more likely to talk to your customer service agents directly if they can rest easy knowing their data isn’t going to be exposed to malicious actors.

Better Analytics

Speaking of big data, rich messaging makes it possible to gather and conduct fairly sophisticated customer service data analysis. You can gather statistics about obvious metrics like reply rates or feed conversations into a sentiment analysis system to determine how people feel about you, your company, and your service.

This allows you to identify patterns in customer behavior, optimize your use of AI, and generally start tinkering with your procedures to better serve customer needs.

It also goes the other way, inasmuch as you can send real-time alerts confirming an issue was received, updating a customer on the status of a ticket, etc. Sure, this isn’t technically “analysis,” but it’ll help people feel more at ease when interacting with your customer service agents, so it’s worth bearing in mind.

Rich Channels of Communication

Where can you use rich messaging? In the sections that follow, we’ll answer this exact question!


WhatsApp is a platform overseen by Meta (formerly Facebook) that supports rich text messaging, voice messaging, and video calling. With more than two billion users, it’s incredibly popular. A key reason for this is that all this data is sent over the internet, obviating the SMS fees that used to keep us all up at night. And it has a business API that will allow you to scale up with increased demand.

Apple Rich Messaging

Apple’s rich messaging service is called Apple Messages for Business. It offers potential and existing customers a way to communicate with your agents directly via their Apple devices.

This is a market you can’t afford to ignore; with nearly two billion Apple devices, the reach of iOS is simply gigantic, and it’s a communication channel you should be cultivating.

Google Rich Messaging

More than nine out of ten searches happen on Google, meaning that it has become the powerhouse when it comes to finding information online. And if that’s not enough to convince you, consider that the phrase “Google it” is now just what people say when they’re talking about looking something up.

However, you may not be aware that Google offers a Business Messages service that should be part of your overall customer strategy.

Building Trust through Rich Communication Service Messages

Being successful in business requires many things, but one of the more important ones is trust. This has always been true, of course, but it’s only become more so with the rise of artificial intelligence.

We’ve been singing the praises of generative AI for a while, and firmly believe that it will have a huge positive impact on the contact center industry. But there’s a downside to the fact that it’s now trivial to crank industrial quantities of text, video, and images.

There’s always been plenty of nonsense online, but once upon a time, the ability to create such content was limited by the fact that someone, somewhere, had to actually sit down and make it. That’s no longer the case, which means that users are more eager than ever for signs that they’re dealing with customer service they can rely on.

Rich messaging has a part to play in that, and in the next few sections, we’ll explain why.

High-Quality Interactions Will Have Customers Coming Back

Rich messaging has many tools that make it easier to ensure that customers have a first-class experience interacting with your contact center. The rich messaging services described above have APIs, for example, that allow you to better organize conversations. This means agents can stay on top of their workloads, leading to less of the kind of frustration and distress that might negatively color their replies.

These services can also be integrated with high-quality conversational AI platforms. When agents can outsource simple, standard queries to algorithms or reuse snippets, they have more time to focus on solving trickier problems.

The net result is that agents feel less burned out, and customers get better help, faster.

Consistency in Experiences

Another way to build trust is to ensure your style is consistent across channels. Just as you wouldn’t use a different logo on Facebook and Instagram, you shouldn’t use a dramatically different tone of voice on one platform than you use on another.

When people know what to expect from you, they’re more likely to trust you. Because rich messaging supports many different kinds of media, you can ensure that customer experiences remain consistent.

This is also a place where generative AI comes in handy. The best conversational AI platforms train models on the conversations of senior agents and make this available to everyone in the contact center. This means that each agent can format replies with the same empathy, patience, and understanding as their very best peers.

Verified Business Profiles

Finally, using a verified account is a basic step you can take to increase trust. If you thought getting junk mail was bad, pause for a moment and consider the absolute barrage of text messages, bogus phone calls, and DMs most of us get every single day. There is a never-ending sea of bot accounts on Twitter and other platforms trying to dupe everyone into one crypto scam or another, and this has substantially eroded people’s trust in online interactions.

The rich messaging services offered by Google, WhatsApp, and Apple all have a fairly lengthy process for verifying the authenticity of your profile. By itself, this isn’t going to ensure that customers trust you, but it helps. People want to know that they’re talking to a real business, not an imposter; the “proof of work” (speaking of crypto) required to verify a rich messaging account is a crucial part of establishing that rapport.

Rich Messaging is the Future of Text

The world today looks very different from the world of the early 2000s. Our technologies, including our text messaging, have evolved along with it, and businesses have to keep up if they want to remain relevant.

Rich messaging is a great way to build trust and loyalty, and it opens up many new opportunities. But to get the most out of rich messaging, it really helps to work with a platform that offers robust tooling, language models, analytics, and so on.

Quiq is one such platform. Reach out to us to schedule a demo, and see how we can ensure your text-messaging outreach is profitable, productive, and easy!

Request A Demo

How to Improve Contact Center Performance (With Data)

Contact centers are a crucial part of offering quality products. Long after the software has been built and the marketing campaigns have been run, there will still be agents helping customers reset their passwords and debug tricky issues.

This means we must do everything we can to ensure that our contact centers are operating at peak efficiency. Data analytics is an important piece of the puzzle, offering the kinds of hard numbers we need to make good decisions, do right by our customers, and support the teams we manage.

That will be our focus today. We’ll cover the basics of implementing a data analysis process, as well as how to use it to assess and improve various contact center performance metrics.

Let’s get going!

How to Use Data Analytics to Increase Contact Center Performance

A great place to start is with a broader overview of the role played by data analytics in making decisions in modern contact centers. Here, we’ll cover the rudiments of how data analytics works, the tools that can be used to facilitate it, and how it can be used in making critical decisions.

Understanding the Basics of Data Analytics in Contact Centers

Let’s define data analytics in the context of contact center performance management. Like the term “data scientist”—which could cover anything from running basic SQL queries to building advanced reinforcement learning agents—“data analytics” is a nebulous term that can be used in many different conversations and contexts.

Nevertheless, its basic essence could be summed up as “using numbers to make decisions.”

If you’re reading this, the chances are good that you have a lot of experience in contact center performance management already, but you may or may not have spent much time engaging in data analytics. If so, be aware that data analysis is an enormously powerful tool, especially for contact centers.

Imagine, for example, a new product is released, and you see a sudden increase in average handle time. This could mean there is something about it that’s especially tricky or poorly explained. You could improve your contact center performance metrics simply by revisiting that particular product’s documentation to see if anything strikes you as problematic.

Of course, this is just a hypothetical scenario, but it shows you how much insight you can gain from even rudimentary numbers related to your contact center.

Implementing Analytics Tools and Techniques

Now, let’s talk about what it takes to leverage the power of contact center performance metrics. You can slice up the idea of “analytics tools and techniques” in a few different ways, but by our count, there are (at least) four major components.

Gathering the Data

First, like machine learning, analytics is “hungry,” meaning that it tends to be more powerful the more data you have. For this reason, you have to have a way of capturing the data needed to make decisions.

In the context of contact center performance, this probably means setting up a mechanism for tracking any conversations between agents and customers, as well as whatever survey data is generated by customers reflecting on their experience with your company.

Storing the Data

This data has to live somewhere, and if you’re dealing with text, there are various options. “Structured” textual data follows a consistent format and can be stored in a relational database like MySQL. “Unstructured” textual data may or may not be consistent and is best stored in a non-relational database like MongoDB, which is better suited for it.

It’s not uncommon to have both relational and non-relational databases for storing specific types of data. Survey responses are well-structured so they might go in MySQL, for instance, while free-form conversations with agents might go in MongoDB. There are also more exotic options like graph databases and vector databases, but they’re beyond the scope of this article.

Analyzing the Data

Once you’ve captured your data and stored it somewhere, you have to analyze it—the field isn’t called data analytics for nothing! A common way to begin analyzing data is to look for simple, impactful, long-term trends—is your AHT going up or down, for instance? You can also look for cyclical patterns. Your AHT might generally be moving in a positive direction, but with noticeable spikes every so often that need to be explained and addressed.

You could also do more advanced analytics. After you’ve gathered a reasonably comprehensive set of survey results, for example, you could run them through a sentiment analysis algorithm to find out the general emotional tone of the interactions between your agents and your customers.

Serving Up Your Insights

Finally, once you’ve identified a set of insights you can use to make decisions about improving contact center performance, you need to make them available. By far the most common way is by putting some charts and graphs in a PowerPoint presentation and delivering it to the people making actual decisions. That said, some folks opt instead to make fancy dashboards, or even to create monitoring tools that update in real time.

Effectively Leveraging Data

As you can see, creating a top-to-bottom contact center performance solution takes a lot of effort. The best way to save time is to find a tool that abstracts away as much of the underlying technical work as possible.

Ideally, you’d be looking for quick insights generated seamlessly across all the many messaging channels contact centers utilize these days. It’s even better if those insights can easily be published in reports that inform your decision-making.

What’s the payoff? You’ll be able to scrutinize (and optimize) each step taken during a customer journey, and discover how and why your customers are reaching out. You’ll have much more granular information about how your agents are functioning, giving you the tools needed to improve KPIs and streamline your internal operations.

We’ll treat each of these topics in the remaining sections, below.

How to Improve KPIs in Contact Center

After gathering and analyzing a lot of data, you’ll no doubt notice key performance indicators (KPIs) that aren’t where you want them to be. Here, we’ll discuss strategies for getting those numbers up!

Identifying Key Performance Indicators (KPIs)

First, let’s briefly cover some of the KPIs you’d be looking for.

  • First Contact Resolution (FCR) – The first contact resolution is the fraction of issues a contact center is able to resolve on the first try, i.e. the first time the customer reaches out.
  • Average Handle Time (AHT) – The average handle time is one of the more important metrics contact centers track, and it refers to the mean length of time an agent spends on a task (this includes both talking to customers directly and whatever follow-up work comes after).
  • Customer Satisfaction (CSAT) – The customer satisfaction score attempts to gauge how customers feel about your product and service.
  • Call Abandon Rate (CAR) – The call abandon rate is the fraction of customers who end a call with an agent before their question has been answered.
  • Net Promoter Score (NPS) – The net promoter score is a number (usually from 1-10) that quantifies how likely a given customer would be to recommend you to someone they know.

Of course, this is just a sampling of the many contact center performance metrics you can track. Ultimately, you want to choose a set of metrics that gives you a reasonably comprehensive view of how well your contact center is doing, and whether it’s getting better or worse over time.

Strategies for Improving Key KPIs

There are many things you can do to improve your KPIs, including up-training your personnel or making your agents more productive with tools like generative AI.

This is too big a topic to cover comprehensively, but since generative AI is such a hot topic let’s walk through a case study where using it led to dramatic improvements in efficiency.

LOOP is a Texas-based car insurance provider that partnered with Quiq to deploy a generative AI assistant. Naturally, they already had a chatbot in place, but they found it could only offer formulaic answers. This frustrated customers, prevented them from solving their own problems, and negatively impacted KPIs overall.

However, by integrating a cutting-edge AI assistant powered by large language models, they achieved a remarkable threefold increase in self-service rates. By the end, more than half of all customer issues were resolved without the need for agents to get involved, and fully three-quarters of customers indicated that they were satisfied with the service provided by the AI.

Now, we’re not suggesting that you can solve every problem with fancy new technology. No, our point here is that you should evaluate every option in an attempt to find workable contact center performance solutions, and we think this is a useful example of what’s possible with the right approach.

Tips to Boost Contact Center Operational Efficiency

We’ve covered a lot of ground related to data analysis and how it can help you make decisions about improving contact center performance. In this final section, we’ll finish by talking about using data analytics and other tools to make sure you’re as operationally efficient as you can be.

Streamlining Operations with Technology

The obvious place to look is technology. We’ve already discussed AI assistants, but there’s plenty more low-hanging fruit to be picked.

Consider CRM integrations, for example. We’re in the contact center business, so we know all about the vicissitudes of trying to track and manage a billion customer relationships. Even worse, the relevant data is often spread out across many different locations, making it hard to get an accurate picture of who your customers are and what they need.

But if you invest in solutions that allow you to hook your CRM up to your other tools, you can do a better job of keeping those data in sync and serving them up where they’ll be the most use. As a bonus, these data can be fed to a retrieval augmented generation system to help your AI assistant create more accurate replies. They can also form a valuable part of your all-important data analytics process.

What’s more, these same analytics can be used to identify sticking points in your workflows. With this information, you’ll be better equipped to rectify any problems and keep the wheels turning smoothly.

Empowering Agents to Enhance Performance

We’ve spent a lot of time in this post discussing data analytics, AI, and automation, but it’s crucial not to forget that these things are supplements to human agents, not replacements for them. Ultimately, we want agents to feel empowered to utilize the right tools to do their jobs better.

First, to the extent that it’s possible (and appropriate), agents should be given access to the data analytics you perform in the future. If you think you’re making better decisions based on data, it stands to reason that they would do the same.

Then, there are various ways of leveraging generative AI to make your agents more effective. Some of these are obvious, as when you utilize a tool like Quiq Snippets to formulate high-quality replies more rapidly (this alone will surely drop your AHT). But others are more out-of-the-box, such as when new agents can use a language model to get up to speed on your product offering in a few days instead of a few weeks.

Continuously Evaluating and Refining Processes

To close out, we’ll reiterate the importance of consistently monitoring your contact center performance metrics. These kinds of numbers change in all sorts of ways, and the story they tell changes along with them.

It’s not enough to measure a few KPIs and then call it a day, you need to have a process in place to check them consistently, revising your decisions along the way.

Next Steps for Improving Your Contact Center Metrics

They say that data is the new oil, as it’s a near-inexhaustible source of insights. With the right data analysis, you can figure out which parts of your contact center are thriving and which need more support, and you can craft strategies that set you and your teams up to succeed.

Quiq is well-known as a conversational AI platform, but we also have a robust suite of tools for making the most out of the data generated by your contact center. Set up a demo to figure out how we can give you the facts you need to thrive!

Request A Demo

WhatsApp Business: A Guide for Contact Center Managers

In today’s digital era, businesses continually seek innovative ways to connect with their customers, striving to enhance communication and foster deeper relationships. Enter WhatsApp Business – a game-changer in the realm of digital communication. This powerful tool is not just a messaging app; it’s a bridge between businesses and their customers, offering a plethora of features designed to streamline communication, improve customer service, and boost engagement. Whether you’re a small business owner or part of a global enterprise, understanding the potential of WhatsApp Business could redefine your approach to customer communication.

What is Whatsapp Business?

WhatsApp is an application that supports text messaging, voice messaging, and video calling for over two billion global users. Because it leverages a simple internet connection to send and receive data, WhatsApp users can avoid the fees that once made communication so expensive.

Since WhatsApp already has such a large base of enthusiastic users, many international brands have begun leveraging it to communicate with their own audiences. It also has a number of built-in features that make it an attractive option for businesses wanting to establish a more personal connection with their customers, and we’ll cover those in the next section.

What Features Does WhatsApp Business Have?

In addition to its reach and the fact that it reduces the budget needed for communication, WhatsApp Business has additional functionality that makes it ideal for any business trying to interact with its customers.

When integrated with a tool like the Quiq conversational AI platform, WhatsApp Business can automatically transcribe voice-based messages. Even better, WhatsApp Business allows you to export these conversations later if you want to analyze them with a tool like natural language processing.

If your contact center agents and the customers they’re communicating with have both set a “preferred language,” WhatsApp can dynamically translate between these languages to make communication easier. So, if a user sends a voice message in Russian and the agent wants to communicate in English, they’ll have no trouble understanding one another.

What are the Differences Between WhatsApp and WhatsApp Business?

Before we move on, it’s worth pointing out that WhatsApp and WhatsApp Business are two different services. On its own, WhatsApp is the most widely used messaging application in the world. Businesses can use WhatsApp to talk to their customers, but with a WhatsApp Business account, they get a few extra perks.

Mostly, these perks revolve around building brand awareness. Unlike a basic WhatsApp account, a WhatsApp Business account allows you to include a lot of additional information about your company and its services. It also provides a labeling system so that you can organize the conversations you have with customers, and a variety of other tools so you can respond quickly and efficiently to any issues that come up.

The Advantages of WhatsApp Messaging for Businesses

Now, let’s spend some time going over the myriad advantages offered by a WhatsApp outreach strategy. Why, in other words, would you choose to use WhatsApp over its many competitors?

Global Reach and Popularity

First, we’ve already mentioned the fact that WhatsApp has achieved worldwide popularity, and in this section, we’ll drill down into more specifics.

When WhatsApp was acquired by Meta in 2014, it already boasted 450 million active users per month. Today, this figure has climbed to a remarkable 2.7 billion, but it’s believed it will reach a dizzying 3.14 billion as early as 2025.

With over 535 million users, India is the country where WhatsApp has gained the most traction by far. Brazil is second with 148 million users, and Indonesia is third with 112 million users.

The gender divide among WhatsApp users is pretty even – men account for just shy of 54% of WhatsApp users, so they have only a slight majority.

The app itself has over 5 billion downloads from the Google Play store alone, and it’s used to send 140 billion messages each day.

These data indicate that WhatsApp could be a very valuable channel to cultivate, regardless of the market you’re looking to serve or where your customers are located.

Personalized Customer Interactions

Firstly, platforms like WhatsApp enable businesses to customize communication with a level of scale and sophistication previously unavailable.

This customization is powered by machine learning, a technology that has consistently led the charge in the realm of automated content personalization. For example, Spotify’s ability to analyze your listening patterns and suggest music or podcasts that match your interests is powered by machine learning. Now, thanks to advancements in generative AI, similar technology is being applied to text messaging.

Past language models often fell short in providing personalized customer interactions. They tended to be more “rule-based” and, therefore, came off as “mechanical” and “unnatural.” However, contemporary models greatly improve agents’ capacity to adapt their messages to a particular situation.

While none of this suggests generative AI is going to entirely take the place of the distinctive human mode of expression, for a contact center manager aiming to improve customer experience, this marks a considerable step forward.

Below, we have a section talking a little bit more about integrating AI into WhatsApp Business.

End-to-End Encryption

One thing that has always been a selling point for WhatsApp is that it takes security and privacy seriously. This is manifested most obviously in the fact that it encrypts all messages end-to-end.

What does this mean? From the moment you start typing a message to another user all the way through when they read it, the message is protected. Even if another party were to somehow intercept your message, they’d still have to crack the encryption to read it. What’s more, all of this is enabled by default – you don’t have to spend any time messing around with security settings.

This might be more important than you realize. We live in a world increasingly beset by data breaches and ransomware attacks, and more people are waking up to the importance of data security and privacy. This means that a company that takes these aspects of its platform very seriously could have a leg up where building trust is concerned. Your users want to know that their information is safe with you, and using a messaging service like WhatsApp will help to set you apart.


Finally, WhatsApp’s Business API is a sophisticated programmatic interface designed to scale your business’s outreach capabilities. By leveraging this tool, companies can connect with a broader audience, extending their reach to prospects and customers across various locations. This expansion is not just about increasing numbers; it’s about strategically enhancing your business’s presence in the digital world, ensuring that you’re accessible whenever your customers need to reach out to you.

By understanding the value WhatsApp’s Business API brings in reaching and engaging with more people effectively, you can make an informed decision about whether it represents the right technological solution for your business’s expansion and customer engagement strategies.

Enhancing Contact Center Performance with WhatsApp Messaging

Now, let’s turn our attention to some of the concrete ways in which WhatsApp can improve your company’s chances of success!

Improving Response and Resolution Metrics Times

Integrating technologies like WhatsApp Business into your agent workflow can drastically improve efficiency, simultaneously reducing response times and boosting customer satisfaction. Agents often have to manage several conversations at once, and it can be challenging to keep all those plates spinning.

However, a quality messaging platform like WhatsApp means they’re better equipped to handle these conversations, especially when utilizing tools like Quiq Compose.

Additionally, less friction in resolving routine tasks means agents can dedicate their focus to issues that necessitate their expertise. This not only leads to more effective problem-solving, it means that fewer customer inquiries are overlooked or terminated prematurely.

Integrating Artificial Intelligence

According to WhatsApp’s own documentation, there’s an ongoing effort to expand the API to allow for the integration of chatbots, AI assistants, and generative AI more broadly.

Today, these technologies possess a surprisingly sophisticated ability to conduct basic interactions, answer straightforward questions, and address a wide range of issues, all of which play a significant role in boosting customer satisfaction and making agents more productive.

We can’t say for certain when WhatsApp will roll out the red carpet for AI vendors like Quiq, but if our research over the past year is any indication, it will make it dramatically easier to keep customers happy!

Gathering Customer Feedback

Lastly, an additional advantage to WhatsApp messaging is the degree to which it facilitates collecting customer feedback. To adapt quickly and improve your services, you have to know what your customers are thinking. And more specifically, you have to know the details about what they like and dislike about your product or service.

In the Olde Days (i.e. 20 years ago year, or so), the only real way to do this was by conducting focus groups, sending out surveys – sometimes through the actual mail, if you can believe it – or doing something similarly labor-intensive.

Today, however, your customers are almost certainly walking around with a smartphone that supports text messaging. And, since it’s pretty easy for them to answer a few questions or dash off a few quick lines describing their experience with your service, odds are that you can gather a great deal of feedback from them.

Now, we hasten to add that you must exercise a certain degree of caution in interpreting this kind of feedback, as getting an accurate gauge of customer sentiment is far from trivial. To name just one example, the feedback might be exaggerated in both the positive and negative direction because the people most likely to send feedback via text messaging are the ones who really liked or really didn’t like you.

That said, so long as you’re taking care to contextualize the information coming from customers, supplementing it with additional data wherever appropriate, it’s valuable to have.

Wrapping Up

From its global reach and popularity to the personalized customer interactions it facilitates, WhatsApp Business stands out as a powerful solution for businesses aiming to enhance their digital presence and customer engagement strategies. By leveraging the advanced features of WhatsApp Business, companies can avail themselves of end-to-end encryption, enjoy scalability, and improve contact center performance, thereby positioning themselves at the forefront of the contact center game.

And speaking of being at the forefront, the Quiq conversational CX platform offers a staggering variety of different tools, from AI assistants powered by language models to advanced analytics on agent performance. Check us out or schedule a demo to see what we can do for your contact center!

Your CX Strategy Should Include Apple Messages for Business. Here’s Why.

Your CX Strategy Should Include Apple Messages for Business. Here’s Why.

A common piece of marketing advice says you should “Meet your customers where they’re at.” These days, there are something like 23 billion text messages sent daily across the world, so your customers are probably on their phones.

Twenty years ago, you could be forgiven for thinking that text messaging was a method of communication reserved for teenagers sending each other inscrutable strings of hieroglyphic emojis, but more and more business is being done this way. It’s now relatively common for contact centers to offer customer support over chat, which means text messaging has emerged as a vital customer service channel.

In this piece, we will focus specifically on one text messaging service, Apple Messages, and how it can be leveraged to create personalized and efficient customer interactions. Along the way, we’ll talk about some of the exciting work being done to leverage AI assistants through text messaging so you can stay one step ahead of the competition.

The Advantages of Apple Messages in Customer Service

Here, we’re going to discuss the myriad advantages conferred by using Apple Messages. But before we do that, it’s worth making sure we’re all on the same page by discussing what Apple Messages is in the first place.

You probably already know that Apple’s line of iPhones supports text messaging, like all mobile phones. But Apple Messages is a distinct product designed to allow businesses like yours to interact with customers.

It makes it easy to set up a variety of touchpoints, like QR codes, an app, or an email message, through which customers can make appointments, raise (and resolve) problems, or pay for your services.

There are many ways in which utilizing Apple Messages can help you, which we’ll discuss now.

Personalization at Scale

First, tools like Apple Messages allow businesses to personalize communication at a scale and sophistication never seen before.

This personalization is achieved with machine learning, which has consistently been at the forefront of automated content customization. For instance, Netflix is well-known for identifying trends in your viewing habits and using algorithms to recommend shows that align with your preferences. Now, thanks to generative AI, this technology is making its way into text messaging.

Yesterday’s language models often lacked the flexibility for personalized customer interactions, sounding “robotic” and “artificial.” Modern models significantly bolster agents’ ability to tailor their conversations to the specific context. Though they do not completely replace the unique human element, for a contact center manager focused on enhancing customer experience, this represents a significant advancement.

Speed and Convenience

Another place where text messaging shines strategically is its speed and convenience. Texting became popular in the first place because it streamlined the communication process. But, unlike with a phone call, this communication could be done privately, without disturbing others.

Customers needing to troubleshoot an issue while they’re on the bus or somewhere public will likely want to do so with a chat interface. This provides the opportunity to

High Engagement Rates

One aspect of a customer communication strategy you’ll have to consider is what the likely engagement with it will be. Text messaging, particularly through platforms like Apple Messages, boasts higher open and response rates than other channels.

The statistics backing this up are compelling – 98% of text messages sent to customers are opened and eventually read, with fully 90% of them being read just three minutes after being received. Even better, nearly half (48%) of text messages sent to customers get responses.

On its own, this indicates the enormous potential for text-messaging strategies to get your customers talking to you, but when you consider the fact that only around a quarter of emails are opened and read, it’s hard to escape the conclusion that you should be investing seriously in this channel.

Leveraging AI in Apple Messages

Artificial intelligence, especially large language models, are all the rage these days, and they’re being deployed in text messages as well. Since Apple Messages allows you to use your own bots and virtual agents, it’s worth spending a few minutes talking about how generative AI can help.

There are a few different ways in which an AI customer service agent can streamline your customer service operations.

The simplest is by directly resolving issues—or helping customers to directly resolve their own issues—with little need for intervention by human contact center agents. There are many problems that are too involved for this to work, of course, but if all a customer needs to do is reset a password it could well be sufficient.

(Note, however, that Apple Messages requires you to include an option allowing a customer to escalate to a human agent. As things stand today, that part is non-negotiable).

Even when a human agent needs to get involved, however, generative AI can help. The Quiq conversational CX platform has a tool called “Quiq Compose”, for example, which can help format replies. An agent can input a potential reply with grammatical mistakes, misspellings, and a lack of warmth, and Quiq Compose will work its magic to turn the reply into something polished and empathic.

Improving Contact Center Performance with Apple Messages

Assuming that you’ve set up Apple Messages and supercharged it with the latest and greatest AI customer service agent, what can you expect to happen? That’s the question we’ll address in these sections.

Reducing Response Times

When combined with AI assistants and related technologies, Apple Messages can significantly reduce response times and increase customer satisfaction. It’s well known that contact center agents are often juggling multiple conversations at a time, and it can be hard to keep it all straight. But when they’re backed up by chatbots, Quiq Compose, etc., they can handle this volume in less time than ever before.

Generative AI is now good enough to carry on relatively lightweight interactions, answer basic questions, and help solve myriad issues; this, by itself, will almost certainly reduce response times. But it also means that agents can pivot to focusing on the thorniest, highest-priority tasks, which will further drive response times down.

Increasing Resolution Rates

For all the reasons just mentioned, AI assistants can increase resolution rates. Part of this will stem from the fact that fewer customers will fall through the cracks or end their calls early. But it will also come from agents being less rushed and more able to work on those tickets that really require their attention.

This is easy to see with an example. Imagine two people, each with daunting lists of chores they’re not sure they can finish. One of them is all on their own, while the other can outsource the most banal 30% of their tasks to robots.

Who would you bet on to have the highest chore resolution rate?

Implementing Apple Messages in Your Contact Center

The basic steps for getting started with Apple Messages are easy to follow.

First, you have to register your account. We’ve been using the name “Apple Messages” throughout this piece, but its full name is “Apple Messages for Business,” and your account must be tied to an actual business to be eligible.

Then, you have to create an account where your branding assets will live and where you’ll select the Messaging Service Provider (MSP) that you’d like to use. Apple will then review your submission, and, after a few days, will tell you whether you’ve been approved. As you’re planning your text messaging efforts, make sure that you’re factoring in the approval process.

With that done, you’ll have to start thinking in detail about your customer’s journey by filling out a Use Case template. You need to outline what you hope to achieve with text messaging, then decide on the entry points you want to offer your customers.

Next up, you’ll work out the user experience. This involves creating the automated messages you want to use, configuring Apple Pay if relevant, and designing customer satisfaction surveys.

Afterward, you need to set up metrics to figure out how your text messages are landing and whether there are things you can do to improve. If you’ve read our past articles on leveraging customer insights, you know how important data is to your ultimate success.

Last of all, Apple will spend a week or two reviewing everything you’ve accomplished in these steps and deciding whether anything else needs to be tweaked. Assuming you pass, you’re ready to go with Apple Messages!

Request A Demo

Final Thoughts on Why Your Business Should Use Apple Messages

Contact centers are increasingly coming to resemble technology companies, and the rise of Apple Messages is a great illustration of that. Apple Messages makes it easy to deploy AI assistants to interact with your customers, thereby reaping the enormous benefits of automation.

And speaking of the benefits of automation, check out the Quiq platform while you’re at it. We’ve worked hard to suss out the best ways of applying artificial intelligence to contact centers, and have built a product around our findings. We’ve helped many others, and we can help you too!