What are the Biggest Questions About AI?

The term “artificial intelligence” was coined at the famous Dartmouth Conference in 1956, put on by luminaries like John McCarthy, Marvin Minsky, and Claude Shannon, among others.

These organizers wanted to create machines that “use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.” They went on to claim that “…a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.”

Half a century later, it’s fair to say that this has not come to pass; brilliant as they were, it would seem as though McCarthy et al. underestimated how difficult it would be to scale the heights of the human intellect.

Nevertheless, remarkable advances have been made over the past decade, so much so that they’ve ignited a firestorm of controversy around this technology. People are questioning the ways in which it can be used negatively, and whether it might ultimately pose an extinction risk to humanity; they’re probing fundamental issues around whether machines can be conscious, exercise free will, and think in the way a living organism does; they’re rethinking the basis of intelligence, concept formation, and what it means to be human.

These are deep waters to be sure, and we’re not going to swim them all today. But as contact center managers and others begin the process of thinking about using AI, it’s worth being at least aware of what this broader conversation is about. It will likely come up in meetings, in the press, or in Slack channels in exchanges between employees.

And that’s the subject of our piece today. We’re going to start by asking what artificial intelligence is and how it’s being used, before turning to address some of the concerns about its long-term potential. Our goal is not to answer all these concerns, but to make you aware of what people are thinking and saying.

What is Artificial Intelligence?

Artificial intelligence is famous for having had many, many definitions. There are those, for example, who believe that in order to be intelligent computers must think like humans, and those who reply that we didn’t make airplanes by designing them to fly like birds.

For our part, we prefer to sidestep the question somewhat by utilizing the approach taken in one of the leading textbooks in the field, Stuart Russell and Peter Norvig’s “Artificial Intelligence: A Modern Approach”.

They propose a multi-part system for thinking about different approaches to AI. One set of approaches is human-centric and focuses on designing machines that either think like humans – i.e., engage in analogous cognitive and perceptual processes – or act like humans – i.e. by behaving in a way that’s indistinguishable from a human, regardless of what’s happening under the hood (think: the Turing Test).

The other set of approaches is ideal-centric and focuses on designing machines that either think in a totally rational way – conformant with the rules of Bayesian epistemology, for example – or behave in a totally rational way – utilizing logic and probability, but also acting instinctively to remove itself from danger, without going through any lengthy calculations.

What we have here, in other words, is a framework. Using the framework not only gives us a way to think about almost every AI project in existence, it also saves us from needing to spend all weekend coming up with a clever new definition of AI.

Joking aside, we think this is a productive lens through which to view the whole debate, and we offer it here for your information.

What is Artificial Intelligence Good For?

Given all the hype around ChatGPT, this might seem like a quaint question. But not that long ago, many people were asking it in earnest. The basic insights upon which large language models like ChatGPT are built go back to the 1960s, but it wasn’t until 1) vast quantities of data became available, and 2) compute cycles became extremely cheap that much of its potential was realized.

Today, large language models are changing (or poised to change) many different fields. Our audience is focused on contact centers, so that’s what we’ll focus on as well.

There are a number of ways that generative AI is changing contact centers. Because of its remarkable abilities with natural language, it’s able to dramatically speed up agents in their work by answering questions and formatting replies. These same abilities allow it to handle other important tasks, like summarizing articles and documentation and parsing the sentiment in customer messages to enable semi-automated prioritization of their requests.

Though we’re still in the early days, the evidence so far suggests that large language models like Quiq’s conversational CX platform will do a lot to increase the efficiency of contact center agents.

Will AI be Dangerous?

One thing that’s burst into public imagination recently has been the debate around the risks of artificial intelligence, which fall into two broad categories.

The first category is what we’ll call “social and political risks”. These are the risks that large language models will make it dramatically easier to manufacture propaganda at scale, and perhaps tailor it to specific audiences or even individuals. When combined with the astonishing progress in deepfakes, it’s not hard to see how there could be real issues in the future. Most people (including us) are poorly equipped to figure out when a video is fake, and if the underlying technology gets much better, there may come a day when it’s simply not possible to tell.

Political operatives are already quite skilled at cherry-picking quotes and stitching together soundbites into a damning portrait of a candidate – imagine what’ll be possible when they don’t even need to bother.

But the bigger (and more speculative) danger is around really advanced artificial intelligence. Because this case is harder to understand, it’s what we’ll spend the rest of this section on.

Artificial Superintelligence and Existential Risk

As we understand it, the basic case for existential risk from artificial intelligence goes something like this:

“Someday soon, humanity will build or grow an artificial general intelligence (AGI). It’s going to want things, which means that it’ll be steering the world in the direction of achieving its ambitions. Because it’s smart, it’ll do this quite well, and because it’s a very alien sort of mind, it’ll be making moves that are hard for us to predict or understand. Unless we solve some major technological problems around how to design reward structures and goal architectures in advanced agentive systems, what it wants will almost certainly conflict in subtle ways with what we want. If all this happens, we’ll find ourselves in conflict with an opponent unlike any we’ve faced in the history of our species, and it’s not at all clear we’ll prevail.”

This is heady stuff, so let’s unpack it bit by bit. The opening sentence, “…humanity will build or grow an artificial general intelligence”, was chosen carefully. If you understand how LLMs and deep learning systems are trained, the process is more akin to growing an enormous structure than it is to building one.

This has a few implications. First, their internal workings remain almost completely inscrutable. Though researchers in fields like mechanistic interpretability are going a long way toward unpacking how neural networks function, the truth is, we’ve still got a long way to go.

What this means is that we’ve built one of the most powerful artifacts in the history of Earth, and no one is really sure how it works.

Another implication is that no one has any good theoretical or empirical reason to bound the capabilities and behavior of future systems. The leap from GPT-2 to GPT-3.5 was astonishing, as was the leap from GPT-3.5 to GPT-4. The basic approach so far has been to throw more data and more compute at the training algorithms; it’s possible that this paradigm will begin to level off soon, but it’s also possible that it won’t. If the gap between GPT-4 and GPT-5 is as big as the gap between GPT-3 and GPT-4, and if the gap between GPT-6 and GPT-5 is just as big, it’s not hard to see that the consequences could be staggering.

As things stand, it’s anyone’s guess how this will play out. But that’s not necessarily a comforting thought.

Next, let’s talk about pointing a system at a task. Does ChatGPT want anything? The short answer is: as far as we can tell, it doesn’t. ChatGPT isn’t an agent, in the sense that it’s trying to achieve something in the world, but work into agentive systems is ongoing. Remember that 10 years ago most neural networks were basically toys, and today we have ChatGPT. If breakthroughs in agency follow a similar pace (and they very well may not), then we could have systems able to pursue open-ended courses of action in the real world in relatively short order.

Another sobering possibility is that this capacity will simply emerge from the training of huge deep learning systems. This is, after all, the way human agency emerged in the first place. Through the relentless grind of natural selection, our ancestors went from chipping flint arrowheads to industrialization, quantum computing, and synthetic biology.

To be clear, this is far from a foregone conclusion, as the algorithms used to train large language models is quite different from natural selection. Still, we want to relay this line of argumentation, because it comes up a lot in these discussions.

Finally, we’ll address one more important claim, “…what it wants will almost certainly conflict in subtle ways with what we want.” Why think this is true? Aren’t these systems that we design and, if so, can’t we just tell it what we want it to go after?

Unfortunately, it’s not so simple. Whether you’re talking about reinforcement learning or something more exotic like evolutionary programming, the simple fact is that our algorithms often find remarkable mechanisms by which to maximize their reward in ways we didn’t intend.

There are thousands of examples of this (ask any reinforcement-learning engineer you know), but a famous one comes from the classic Coast Runners video game. The engineers who built the system tried to set up the algorithm’s rewards so that it would try to race a boat as well as it could. What it actually did, however, was maximize its reward by spinning in a circle to hit a set of green blocks over and over again.

biggest questions about AI

Now, this may seem almost silly – do we really have anything to fear from an algorithm too stupid to understand the concept of a “race”?

But this would be missing the thrust of the argument. If you had access to a superintelligent AI and asked it to maximize human happiness, what happened next would depend almost entirely on what it understood “happiness” to mean.

If it were properly designed, it would work in tandem with us to usher in a utopia. But if it understood it to mean “maximize the number of smiles”, it would be incentivized to start paying people to get plastic surgery to fix their faces into permanent smiles (or something similarly unintuitive).

Does AI Pose an Existential Risk?

Above, we’ve briefly outlined the case that sufficiently advanced AI could pose a serious risk to humanity by being powerful, unpredictable, and prone to pursuing goals that weren’t-quite-what-we-meant.

So, does this hold water? Honestly, it’s too early to tell. The argument has hundreds of moving parts, some well-established and others much more speculative. Our purpose here isn’t to come down on one side of this debate or the other, but to let you know (in broad strokes) what people are saying.

At any rate, we are confident that the current version of ChatGPT doesn’t pose any existential risks. On the contrary, it could end up being one of the greatest advancements in productivity ever seen in contact centers. And that’s what we’d like to discuss in the next section.

Will AI Take All the Jobs?

The concern that someday a new technology will render human labor obsolete is hardly new. It was heard when mechanized weaving machines were created, when computers emerged, when the internet emerged, and when ChatGPT came onto the scene.

We’re not economists and we’re not qualified to take a definitive stand, but we do have some early evidence that is showing that large language models are not only not resulting in layoffs, they’re making agents much more productive.

Erik Brynjolfsson, Danielle Li, and Lindsey R. Raymond, three MIT economists, looked at the ways in which generative AI was being used in a large contact center. They found that it was actually doing a good job of internalizing the ways in which senior agents were doing their jobs, which allowed more junior agents to climb the learning curve more quickly and perform at a much higher level. This had the knock-on effect of making them feel less stressed about their work, thus reducing turnover.

Now, this doesn’t rule out the possibility that GPT-10 will be the big job killer. But so far, large language models are shaping up to be like every prior technological advance, i.e., increasing employment rather than reducing it.

What is the Future of AI?

The rise of AI is raising stock valuations, raising deep philosophical questions, and raising expectations and fears about the future. We don’t know for sure how all this will play out, but we do know contact centers, and we know that they stand to benefit greatly from the current iteration of large language models.

These tools are helping agents answer more queries per hour, do so more thoroughly, and make for a better customer experience in the process.

If you want to get in on the action, set up a demo of our technology today.

Request A Demo

Exploring Cutting-Edge Research in Large Language Models and Generative AI

By the calendar, ChatGPT was released just a few months ago. But subjectively, it feels as though 600 years have passed since we all read “as a large language model…” for the first time.

The pace of new innovations is staggering, but we at Quiq like to help our audience in the customer experience and contact center industries stay ahead of the curve (even when that requires faster-than-light travel).

Today, we will look at what’s new in generative AI, and what will be coming down the line in the months ahead.

Where will Generative AI be applied?

First, let’s start with industries that will be strongly impacted by generative AI. As we noted in an earlier article, training a large language model (LLM) like ChatGPT mostly boils down to showing it tons of examples of text until it learns a statistical representation of human language well enough to generate sonnets, email copy, and many other linguistic artifacts.

There’s no reason the same basic process (have it learn it from many examples and then create its own) couldn’t be used elsewhere, and in the next few sections, we’re going to look at how generative AI is being used in a variety of different industries to brainstorm structures, new materials, and a billion other things.

Generative AI in Building and Product Design

If you’ve had a chance to play around with DALL-E, Midjourney, or Stable Diffusion, you know that the results can be simply remarkable.

It’s not a far leap to imagine that it might be useful for quickly generating ideas for buildings and products.

The emerging field of AI-generated product design is doing exactly this. With generative image models, designers can use text prompts to rough out ideas and see them brought to life. This allows for faster iteration and quicker turnaround, especially given that creating a proof of concept is one of the slower, more tedious parts of product design.

Image source: Board of Innovation

 

For the same reason, these tools are finding use among architects who are able to quickly transpose between different periods and styles, see how better lighting impacts a room’s aesthetic, and plan around themes like building with eco-friendly materials.

There are two things worth pointing out about this process. First, there’s often a learning curve because it can take a while to figure out prompt engineering well enough to get a compelling image. Second, there’s a hearty dose of serendipity. Often the resulting image will not be quite what the designer had in mind, but it’ll be different in new and productive ways, pushing the artist along fresh trajectories that might never have occurred to them otherwise.

Generative AI in Discovering New Materials

To quote one of America’s most renowned philosophers (Madonna), we’re living in a material world. Humans have been augmenting their surroundings since we first started chipping flint axes back in the Stone Age; today, the field of materials science continues the long tradition of finding new stuff that expands our capabilities and makes our lives better.

This can take the form of something (relatively) simple like researching a better steel alloy, or something incredibly novel like designing a programmable nanomaterial.

There’s just one issue: it’s really, really difficult to do this. It takes a great deal of time, energy, and effort to even identify plausible new materials, to say nothing of the extensive testing and experimenting that must then follow.

Materials scientists have been using machine learning (ML) in their process for some time, but the recent boom in generative AI is driving renewed interest. There are now a number of projects aimed at e.g. using variational autoencoders, recurrent neural networks, and generative adversarial networks to learn a mapping between information about a material’s underlying structure and its final properties, then using this information to create plausible new materials.

It would be hard to overstate how important the use of generative AI in materials science could be. If you imagine the space of possible molecules as being like its own universe, we’ve explored basically none of it. What new fabrics, medicines, fuels, fertilizers, conductors, insulators, and chemicals are waiting out there? With generative AI, we’ve got a better chance than ever of finding out.

Generative AI in Gaming

Gaming is often an obvious place to use new technology, and that’s true for generative AI as well. The principles of generative design we discussed two sections ago could be used in this context to flesh out worlds, costumes, weapons, and more, but it can also be used to make character interactions more dynamic.

From Navi trying to get our attention in Ocarina of Time to GlaDOS’s continual reminders that “the cake is a lie” in Portal, non-playable characters (NPCs) have always added texture and context to our favorite games.

Powered by LLMs, these characters may soon be able to have open-ended conversations with players, adding more immersive realism to the gameplay. Rather than pulling from a limited set of responses, they’d be able to query LLMs to provide advice, answer questions, and shoot the breeze.

What’s Next in Generative AI?

As impressive as technologies like ChatGPT are, people are already looking for ways to extend their capabilities. Now that we’ve covered some of the major applications of generative AI, let’s look at some of the exciting applications people are building on top of it.

What is AutoGPT and how Does it Work?

ChatGPT can already do things like generate API calls and build simple apps, but as long as a human has to actually copy and paste the code somewhere useful, its capacities are limited.

But what if that weren’t an issue? What if it were possible to spin ChatGPT up into something more like an agent, capable of semi-autonomously interacting with software or online services to complete strings of tasks?

This is exactly what Auto-GPT is intended to accomplish. Auto-GPT is an application built by developer Toran Bruce Richards, and it is comprised of two parts: an LLM (either GPT-3.5 or GPT-4), and a separate “bot” that works with the LLM.

By repeatedly querying the LLM, the bot is able to take a relatively high-level task like “help me set up an online business with a blog and a website” or “find me all the latest research on quantum computing”, decompose it into discrete, achievable steps, then iteratively execute them until the overall objective is achieved.

At present, Auto-GPT remains fairly primitive. Just as ChatGPT can get stuck in repetitive and unhelpful loops, so too can Auto-GPT. Still, it’s a remarkable advance, and it’s spawned a series of other projects attempting to do the same thing in a more consistent way.

The creators of AssistGPT bill it as a “General Multi-modal Assistant that can Plan, Execute, Inspect, and Learn”. It handles multi-modal tasks (i.e. tasks that rely on vision or sound and not just text) better than Auto-GPT, and by integrating with a suite of tools it is able to achieve objectives that involve many intermediate steps and sub-tasks.

SuperAGI, in turn, is just as ambitious. It’s a platform that offers a way to quickly create, deploy, manage, and update autonomous agents. You can integrate them into applications like Slack or vector databases, and it’ll even ping you if an agent gets stuck somewhere and starts looping unproductively.

Finally, there’s LangChain, which is a similar idea. LangChain is a framework that is geared towards making it easier to build on top of LLMs. It features a set of primitives that can be stitched into more robust functionality (not unlike “for” and “while” loops in programming languages), and it’s even possible to build your own version of AutoGPT using LangChain.

What is Chain-of-Thought Prompting and How Does it Work?

In the misty, forgotten past (i.e. 5 months ago), LLMs were famously bad at simple arithmetic. They might be able to construct elegant mathematical proofs, but if you asked them what 7 + 4 is, there was a decent chance they’d get it wrong.

Chain-of-thought (COT) prompting refers to a few-shot learning method of eliciting output from an LLM that compels it to reason in a step-by-step way, and it was developed in part to help with this issue. This image from the original Wei et al. (2022) paper illustrates how:

Input and output examples for Standard and Chain-of-thought Prompting.
Source: ARXIV.org

As you can see, the model’s performance is improved because it’s being shown a chain of different thoughts, hence chain-of-thought.

This technique isn’t just useful for arithmetic, it can be utilized to get better output from a model in a variety of different tasks, including commonsense and symbolic reasoning.

In a way, humans can be prompt engineered in the same fashion. You can often get better answers out of yourself or others through a deliberate attempt to reason slowly, step-by-step, so it’s not a terrible shock that a large model trained on human text would benefit from the same procedure.

The Ecosystem Around Generative AI

Though cutting-edge models are usually the stars of the show, the truth is advanced technologies aren’t worth much if you have to be deeply into the weeds to use them. Machine learning, for example, would surely be much less prevalent if tools like sklearn, Tensorflow, and Keras didn’t exist.

Though we’re still in the early days of LLMs, AutoGPT, and everything else we’ve discussed, we suspect the same basic dynamic will play out. Since it’s now clear that these models aren’t toys, people will begin building infrastructure around them that streamlines the process of training them for specific use cases, integrating them into existing applications, etc.

Let’s discuss a few efforts in this direction that are already underway.

Training and Education

Among the simplest parts of the emerging generative AI value chain is exactly what we’re doing now: talking about it in an informed way. Non-specialists will often lack the time, context, and patience required to sort the real breakthroughs from the hype, so putting together blog posts, tutorials, and reports that make this easier is a real service.

Making Foundation Models Available

“Foundation models” is a new term that refers to the actual algorithms that underlie LLMs. ChatGPT, for example, is not a foundation model. GPT-4 is the foundation model, and ChatGPT is a specialized application of it (more on this shortly).

Companies like Anthropic, Google, and OpenAI can train these gargantuan models and then make them available through an API. From there, developers are able to access their preferred foundation model over an API.

This means that we can move quickly to utilize their remarkable functionality, which wouldn’t be the case if every company had to train their own from scratch.

Building Applications Around Specific Use Cases

One of the most striking properties of ChatGPT is how amazingly general they are. They are capable of “…generating functioning web apps with just a few prompts, writing Spanish-language children’s stories about the blockchain in the style of Dr. Suess, [and] opining on the virtues and vices of major political figures”, to name but a few examples.

General-purpose models often have to be fine-tuned to perform better on a specific task, especially if they’re doing something tricky like summarizing medical documents with lots of obscure vocabulary. Alas, there is a tradeoff here, because in most cases these fine-tuned models will afterward not be as useful for generic tasks.

The issue, however, is that you need a fair bit of technical skill to set up a fine-tuning pipeline, and you need a fair bit of elbow grease to assemble the few hundred examples a model needs in order to be fine-tuned. Though this is much simpler than training a model in the first place it is still far from trivial, and we expect that there will soon be services aimed at making it much more straightforward.

LLMOps and Model Hubs

We’d venture to guess you’ve heard of machine learning, but you might not be familiar with the term “MLOps”. “Ops” means “operations”, and it refers to all the things you have to do to use a machine learning model besides just training it. Once a model has been trained it has to be monitored, for example, because sometimes its performance will begin to inexplicably degrade.

The same will be true of LLMs. You’ll need to make sure that the chatbot you’ve deployed hasn’t begun abusing customers and damaging your brand, or that the deep learning tool you’re using to explore new materials hasn’t begun to spit out gibberish.

Another phenomenon from machine learning we think will be echoed in LLMs is the existence of “model hubs”, which are places where you can find pre-trained or fine-tuned models to use. There certainly are carefully guarded secrets among technologists, but on the whole, we’re a community that believes in sharing. The same ethos that powers the open-source movement will be found among the teams building LLMs, and indeed there are already open-sourced alternatives to ChatGPT that are highly performant.

Looking Ahead

As they’re so fond of saying on Twitter, “ChatGPT is just the tip of the iceberg.” It’s already begun transforming contact centers, boosting productivity among lower-skilled workers while reducing employee turnover, but research into even better tools is screaming ahead.

Frankly, it can be enough to make your head spin. If LLMs and generative AI are things you want to incorporate into your own product offering, you can skip the heady technical stuff and skip straight to letting Quiq do it for you. The Quiq conversational AI platform is a best-in-class product suite that makes it much easier to utilize these technologies. Schedule a demo to see how we can help you get in on the AI revolution.