• Download AI-Ready CX: A Leader’s Guide for Change, Adoption, and Impact for 12+ templates, tools, and more. Get e-book -->

Everything You Need To Know About The Role Of Vector Databases In AI for CX

All businesses are influenced by the emergence of new technologies, and contact centers are no different. In the constant battle to provide a better experience for agents and customers, contact center managers and their technical partners are always on the lookout for new tools that will make everyone’s lives easier.

We’ve talked a lot about this subject, and today we’re going to continue this streak by diving into the fundamentals of vector databases. If you’re researching the potential of generative AI for your CX teams, vector databases and their role in AI for customer experience is a key strategic component to understand.

Why You Should Care About Vector Databases

Vector databases matter because, amongst many other things, they help you understand how your AI experience is working and where you can improve. If you pick a vendor that has an integrated vector database, you’ll want to make sure that the toolkit gives you visibility into how your data is stored.

AI is impacting use cases across the enterprise. Organizations are therefore identifying which use cases are core to their differentiation and where they have unique data.

Most enterprises choose to buy CX solutions since the industry is so well-developed and mature. With this next generation of AI, vector databases are a critical part of the stack — and we will explain why in this article.

We’ll also touch on why you should choose an AI software vendor with an integrated vector database offering (Pro tip: This is how you get all the benefits with none of the risks).

Why Are Vector Databases Useful in Building an AI Assistant for CX?

As you may know, databases are essentially like warehouses where various kinds of information can be stored, and a vector database is just a warehouse whose function is to store vectors.

A vector is essentially a high-dimensional mathematical representation of something like an image or a word. There are many ways of generating vectors, but at the end of the process, what you’ll have is an array of floating-point (i.e. non-integer) numbers that look like this:

[.8, 1.1, -0.4, 21.3,….,17.8]

A vector embedding for a word might contain thousands of these floating-point numbers, and a corpus of text might contain thousands of words that need to be embedded. This is far too much information to store in a spreadsheet or .txt file, so vector databases were invented to hold these data structures and make them easy to access. In addition, a dedicated vector database will have all sorts of special functions that allow you to calculate the similarity of different vectors, search over them with a query, and do myriad other things people do with data.

The reason this impacts building AI assistants for CX use cases is that much of the power of these tools comes from the underlying vectors. If you build an application that’s able to dynamically answer user questions based on your internal documentation, then it will almost certainly be working with vector embeddings of those documents.

You might wonder why traditional relational databases or NoSQL databases couldn’t be used for this purpose. It’s possible that they could, but different kinds of databases are optimized for different use cases. Relational databases, for example, are excellent at storing structured data, such as customer IDs, purchase histories, etc.

How Does a Vector Database Work for AI Assistants?

There are really only a few things happening inside a vector database when we focus on the main concepts.

First, you have your content, which is whatever you want to vectorize. This content is passed into an embedding model, and that model generates the embeddings we discussed above. Those embeddings are stored in the vector database where an AI assistant can use them, and there’s always some pointer tying each vector to the content that was used to generate it.

When your AI assistant needs to use these embeddings, it does so with a query. This query is vectorized using the same embedding model that generated the vectors in the database, and any vectors that are similar to the query can, therefore, be located quickly and efficiently. Because each vector remains tied to its originating content, that content can be returned to the application.

To concretize this, suppose you had a vector database containing a lot of content related to retail, and your AI assistant submits a query like: “My new jacket arrived in a medium. Can I exchange it for a small?” The database will be able to locate articles containing relevant information based on the similarity between the vectors for the query and the vectors in the database.

Importantly, this is not a simple keyword search. The vector database will return useful results even if there are no strict word matches at all. So, if the retail content says “coat” instead of jacket and “return” instead of exchange, it’ll still match the content to the query and give you something worthwhile.

How Vector Databases Supercharge AI Assistants

What would you be able to do if you took all of your FAQs, product catalogs, documentation, past conversations, etc., and created embeddings from them?

Well, suppose a customer shows up and asks a fairly basic question about your product. You could vectorize their question and match it against your database, returning relevant material even if the query is phrased in different words (or even an entirely different language).

Or suppose an agent wants to see if the thorny issue they’re dealing with relates to anything other agents have had to tackle in the past. As in the previous example, the agent can submit their conversation to the vector database and turn up similar interactions that have taken place, even if the language is different.

Advantages of AI Vector Databases

Vector databases have many compelling properties that make them popular for working with diverse data types.

First, this data tends to be “high-dimensional,” which is a more precise way of saying “big and complicated.” The way vector databases store and index high-dimensional data means that they operate with a speed and efficiency that would be hard to achieve if you stored the same data in a traditional database.

Then, it turns out that a lot of data can be vectorized. We already mentioned words and images, but you can also turn audio, connected graphs (such as those used to represent social networks), and many other kinds of data into embeddings. Even better, it’s often possible to create “multi-modal embeddings” to simultaneously represent a video’s audio, images, and text. This means you could use simple, textual queries to search over hundreds of hours of audio conversations with customers and textual transcripts, for example.

Finally, vector databases offer support for many complex analytics and machine-learning tasks. They can be used to build recommendation systems, perform sentiment analysis, or power generative AI applications.

As impressive as all this is, you probably don’t want to spend too much time thinking about the intricacies of a specialized database.

Managing a vector database is heavy on resources and can be complicated. So, one option we offer at Quiq is a straightforward GUI (Graphical User Interface) called AI Studio that allows you to load your data in a vector database that’s integrated directly into our platform.

Challenges and Considerations of Vector Databases

For all this, vector databases do, of course, have their drawbacks.

To begin with, vector databases are very specialized tools. While they are wonderful for working with the high-dimensional data that will power AI assistants in a contact center, they are not well-suited to storing tabular data. This means you’ll probably need to accommodate a traditional database and its vector-optimized counterpart – unless you work with a conversational AI vendor that has one built in.

There’s also a lot to think about regarding how it integrates with your existing data infrastructure. These days, most vector database companies consider this problem carefully and try to design their systems so that they’re easy to integrate with the rest of your stack.

But, as with everything else, actually going through the steps will require time and energy from your engineers. That said, there are many options to getting the job done. For example, if you partner with Quiq, we enable teams to build out AI assistants in an environment created specifically for this purpose: AI Studio.

Why does any of this matter when you’re exploring the options of introducing generative AI?

In a nutshell: vector databases are critical to safely and effectively using an AI assistant for your organization. But working with such a specialized technology is far from trivial, which is why so many are choosing instead to partner with a team that can handle vector management, or provide you with a tool to make it easier for you to handle it on your own.

If you have already decided to move forward with a vector database and don’t have multiple engineers to throw at the problem, this is what you should be looking for. Get in touch if you want to talk over your options.

Future Trends and Developments for Vector Databases

In this penultimate section, we’ll speculate a bit about where vector databases are heading.

Let’s begin with an easy prediction: vector databases will become more widely used and important. As generative AI continues to rise, there will be more places to utilize vectors, and as such, more companies will turn to them to store embeddings of their datasets.

But, we also think that many of these companies will then have to take a sober look at their cost structure. Vectors are flexible data structures that are uniquely able to power applications like search based on retrieval augmented generation (RAG), but they’re not equally applicable to every problem.

Finally, the trends indicate the vector databases of the future will have a wider range of capabilities. As things stand, they’re mostly built around doing various kinds of search based on the similarity of the underlying vectors. But there’s no reason they couldn’t handle exact matches, too. Together, these would allow you to get a broad, contextual overview and a precise, targeted result.

In the same vein, vector databases will eventually support other vector-based tasks, like classifying vectors or creating vector clusters. This would make it easier to do anomaly detection and similar kinds of unsupervised learning work.

Final Thoughts on Vector Databases

Vector databases are a remarkable technology that is especially important in the age of generative AI, and their rise is part of a bigger shift toward leveraging AI for many tasks.

That said, for contact center teams that are thinking about building a homegrown AI solution for CX, it’s critical to be realistic about the role that vector databases play in building a solution. It’s equally as important to plan ahead to mitigate the risks by bringing on support to help make the project successful.

Quiq’s AI offering features an integrated vector database, and partnering with us means one less thing to worry about. Reach out if you’d like to learn more.

Request A Demo

WhatsApp Business: A Guide for Contact Center Managers

In today’s digital era, businesses continually seek innovative ways to connect with their customers, striving to enhance communication and foster deeper relationships. Enter WhatsApp Business – a game-changer in the realm of digital communication. This powerful tool is not just a messaging app; it’s a bridge between businesses and their customers, offering a plethora of features designed to streamline communication, improve customer service, and boost engagement. Whether you’re a small business owner or part of a global enterprise, understanding the potential of WhatsApp Business could redefine your approach to customer communication.

What is Whatsapp Business?

WhatsApp is an application that supports text messaging, voice messaging, and video calling for over two billion global users. Because it leverages a simple internet connection to send and receive data, WhatsApp users can avoid the fees that once made communication so expensive.

Since WhatsApp already has such a large base of enthusiastic users, many international brands have begun leveraging it to communicate with their own audiences. It also has a number of built-in features that make it an attractive option for businesses wanting to establish a more personal connection with their customers, and we’ll cover those in the next section.

What Features Does WhatsApp Business Have?

In addition to its reach and the fact that it reduces the budget needed for communication, WhatsApp Business has additional functionality that makes it ideal for any business trying to interact with its customers.

When integrated with a tool like the Quiq conversational AI platform, WhatsApp Business can automatically transcribe voice-based messages. Even better, WhatsApp Business allows you to export these conversations later if you want to analyze them with a tool like natural language processing.

If your contact center agents and the customers they’re communicating with have both set a “preferred language,” WhatsApp can dynamically translate between these languages to make communication easier. So, if a user sends a voice message in Russian and the agent wants to communicate in English, they’ll have no trouble understanding one another.

What are the Differences Between WhatsApp and WhatsApp Business?

Before we move on, it’s worth pointing out that WhatsApp and WhatsApp Business are two different services. On its own, WhatsApp is the most widely used messaging application in the world. Businesses can use WhatsApp to talk to their customers, but with a WhatsApp Business account, they get a few extra perks.

Mostly, these perks revolve around building brand awareness. Unlike a basic WhatsApp account, a WhatsApp Business account allows you to include a lot of additional information about your company and its services. It also provides a labeling system so that you can organize the conversations you have with customers, and a variety of other tools so you can respond quickly and efficiently to any issues that come up.

The Advantages of WhatsApp Messaging for Businesses

Now, let’s spend some time going over the myriad advantages offered by a WhatsApp outreach strategy. Why, in other words, would you choose to use WhatsApp over its many competitors?

Global Reach and Popularity

First, we’ve already mentioned the fact that WhatsApp has achieved worldwide popularity, and in this section, we’ll drill down into more specifics.

When WhatsApp was acquired by Meta in 2014, it already boasted 450 million active users per month. Today, this figure has climbed to a remarkable 2.7 billion, but it’s believed it will reach a dizzying 3.14 billion as early as 2025.

With over 535 million users, India is the country where WhatsApp has gained the most traction by far. Brazil is second with 148 million users, and Indonesia is third with 112 million users.

The gender divide among WhatsApp users is pretty even – men account for just shy of 54% of WhatsApp users, so they have only a slight majority.

The app itself has over 5 billion downloads from the Google Play store alone, and it’s used to send 140 billion messages each day.

These data indicate that WhatsApp could be a very valuable channel to cultivate, regardless of the market you’re looking to serve or where your customers are located.

Personalized Customer Interactions

Firstly, platforms like WhatsApp enable businesses to customize communication with a level of scale and sophistication previously unavailable.

This customization is powered by machine learning, a technology that has consistently led the charge in the realm of automated content personalization. For example, Spotify’s ability to analyze your listening patterns and suggest music or podcasts that match your interests is powered by machine learning. Now, thanks to advancements in generative AI, similar technology is being applied to text messaging.

Past language models often fell short in providing personalized customer interactions. They tended to be more “rule-based” and, therefore, came off as “mechanical” and “unnatural.” However, contemporary models greatly improve agents’ capacity to adapt their messages to a particular situation.

While none of this suggests generative AI is going to entirely take the place of the distinctive human mode of expression, for a contact center manager aiming to improve customer experience, this marks a considerable step forward.

Below, we have a section talking a little bit more about integrating AI into WhatsApp Business.

End-to-End Encryption

One thing that has always been a selling point for WhatsApp is that it takes security and privacy seriously. This is manifested most obviously in the fact that it encrypts all messages end-to-end.

What does this mean? From the moment you start typing a message to another user all the way through when they read it, the message is protected. Even if another party were to somehow intercept your message, they’d still have to crack the encryption to read it. What’s more, all of this is enabled by default – you don’t have to spend any time messing around with security settings.

This might be more important than you realize. We live in a world increasingly beset by data breaches and ransomware attacks, and more people are waking up to the importance of data security and privacy. This means that a company that takes these aspects of its platform very seriously could have a leg up where building trust is concerned. Your users want to know that their information is safe with you, and using a messaging service like WhatsApp will help to set you apart.

Scalability

Finally, WhatsApp’s Business API is a sophisticated programmatic interface designed to scale your business’s outreach capabilities. By leveraging this tool, companies can connect with a broader audience, extending their reach to prospects and customers across various locations. This expansion is not just about increasing numbers; it’s about strategically enhancing your business’s presence in the digital world, ensuring that you’re accessible whenever your customers need to reach out to you.

By understanding the value WhatsApp’s Business API brings in reaching and engaging with more people effectively, you can make an informed decision about whether it represents the right technological solution for your business’s expansion and customer engagement strategies.

Enhancing Contact Center Performance with WhatsApp Messaging

Now, let’s turn our attention to some of the concrete ways in which WhatsApp can improve your company’s chances of success!

Improving Response and Resolution Metrics Times

Integrating technologies like WhatsApp Business into your agent workflow can drastically improve efficiency, simultaneously reducing response times and boosting customer satisfaction. Agents often have to manage several conversations at once, and it can be challenging to keep all those plates spinning.

However, a quality messaging platform like WhatsApp means they’re better equipped to handle these conversations, especially when utilizing tools like Quiq Compose.

Additionally, less friction in resolving routine tasks means agents can dedicate their focus to issues that necessitate their expertise. This not only leads to more effective problem-solving, it means that fewer customer inquiries are overlooked or terminated prematurely.

Integrating Artificial Intelligence

According to WhatsApp’s own documentation, there’s an ongoing effort to expand the API to allow for the integration of chatbots, AI assistants, and generative AI more broadly.

Today, these technologies possess a surprisingly sophisticated ability to conduct basic interactions, answer straightforward questions, and address a wide range of issues, all of which play a significant role in boosting customer satisfaction and making agents more productive.

We can’t say for certain when WhatsApp will roll out the red carpet for AI vendors like Quiq, but if our research over the past year is any indication, it will make it dramatically easier to keep customers happy!

Gathering Customer Feedback

Lastly, an additional advantage to WhatsApp messaging is the degree to which it facilitates collecting customer feedback. To adapt quickly and improve your services, you have to know what your customers are thinking. And more specifically, you have to know the details about what they like and dislike about your product or service.

In the Olde Days (i.e. 20 years ago year, or so), the only real way to do this was by conducting focus groups, sending out surveys – sometimes through the actual mail, if you can believe it – or doing something similarly labor-intensive.

Today, however, your customers are almost certainly walking around with a smartphone that supports text messaging. And, since it’s pretty easy for them to answer a few questions or dash off a few quick lines describing their experience with your service, odds are that you can gather a great deal of feedback from them.

Now, we hasten to add that you must exercise a certain degree of caution in interpreting this kind of feedback, as getting an accurate gauge of customer sentiment is far from trivial. To name just one example, the feedback might be exaggerated in both the positive and negative direction because the people most likely to send feedback via text messaging are the ones who really liked or really didn’t like you.

That said, so long as you’re taking care to contextualize the information coming from customers, supplementing it with additional data wherever appropriate, it’s valuable to have.

Wrapping Up

From its global reach and popularity to the personalized customer interactions it facilitates, WhatsApp Business stands out as a powerful solution for businesses aiming to enhance their digital presence and customer engagement strategies. By leveraging the advanced features of WhatsApp Business, companies can avail themselves of end-to-end encryption, enjoy scalability, and improve contact center performance, thereby positioning themselves at the forefront of the contact center game.

And speaking of being at the forefront, the Quiq conversational CX platform offers a staggering variety of different tools, from AI assistants powered by language models to advanced analytics on agent performance. Check us out or schedule a demo to see what we can do for your contact center!

Retrieval Augmented Generation – Ultimate Guide

A lot has changed since the advent of large language models a little over a year ago. But, incredibly, there are already many attempts at extending the functionality of the underlying technology.

One broad category of these attempts is known as “tool use”, and consists of augmenting language models by giving them access to things like calculators. Stories of these models failing at simple arithmetic abound, and the basic idea is that we can begin to shore up their weaknesses by connecting them to specific external resources.

Because these models are famously prone to “hallucinating” incorrect information, the technique of retrieval augmented generation (RAG) has been developed to ground model output more effectively. So far, this has shown promise as a way of reducing hallucinations and creating much more trustworthy replies to queries.

In this piece, we’re going to discuss what retrieval augmented generation is, how it works, and how it can make your models even more robust.

Understanding Retrieval Augmented Generation

To begin, let’s get clear on exactly what we’re talking about. The next few sections will overview retrieval augmented generation, break down how it works, and briefly cover its myriad benefits.

What is Retrieval Augmented Generation?

Retrieval augmented generation refers to a large and growing cluster of techniques meant to help large language models ground their output in facts obtained from an external source.

By now, you’re probably aware that language models can do a remarkably good job of generating everything from code to poetry. But, owing to the way they’re trained and the way they operate, they’re also prone to simply fabricating confident-sounding nonsense. If you ask for a bunch of papers about the connection between a supplement and mental performance, for example, you might get a mix of real papers and ones that are completely fictitious.

If you could somehow hook the model up to a database of papers, however, then perhaps that would ameliorate this tendency. That’s where RAG comes in.

We will discuss some specifics in the next section, but in the broadest possible terms, you can think of RAG as having two components: the generative model, and a retrieval system that allows it to augment its outputs with data obtained from an authoritative external source.

The difference between using a foundation model and using a foundation model with RAG has been likened to the difference between taking a closed-book and an open-booked test – the metaphor is an apt one. If you were to poll all your friends about their knowledge of photosynthesis, you’d probably get a pretty big range of replies. Some friends would remember a lot about the process from high school biology, while others would barely even know that it’s related to plants.

Now, imagine what would happen if you gave these same friends a botany textbook and asked them to cite their sources. You’d still get a range of replies, of course, but they’d be far more comprehensive, grounded, and replete with up-to-date details. [1]

How RAG Works

Now that we’ve discussed what RAG is, let’s talk about how it functions. Though there are many subtleties involved, there are only a handful of overall steps.

First, you have to create a source of external data or utilize an existing one. There are already many such external resources, including databases filled with scientific papers, genomics data, time series data on the movements of stock prices, etc., which are often accessible via an API. If there isn’t already a repository containing the information you’ll need, you’ll have to make one. It’s also common to hook generative models up to internal technical documentation, of the kind utilized by e.g. contact center agents.

Then, you’ll have to do a search for relevancy. This involves converting queries into vectors, or numerical representations that capture important semantic information, then matching that representation against the vectorized contents of the external data source. Don’t worry too much if this doesn’t make a lot of sense, the important thing to remember is that this technique is far better than basic keyword matching at turning up documents related to a query.

With that done, you’ll have to augment the original user query with whatever data came up during the relevancy search. In the systems we’ve seen this all occurs silently, behind the scenes, with the user being unaware that any such changes have been made. But, with the additional context, the output generated by the model will likely be much more grounded and sensible. Modern RAG systems are also sometimes built to include citations to the specific documents they drew from, allowing a user to fact-check the output for accuracy.

And finally, you’ll need to think continuously about whether the external data source you’ve tied your model to needs to be updated. It doesn’t do much good to ground a model’s reply if the information it’s using is stale and inaccurate, so this step is important.

The Benefits of RAG

Language models equipped with retrieval augmented generation have many advantages over their more fanciful, non-RAG counterparts. As we’ve alluded to throughout, such RAG models tend to be vastly more accurate. RAG, of course, doesn’t guarantee that a model’s output will be correct. They can still hallucinate, just as one of your friends reading a botany book might misunderstand or misquote a passage. Still, it makes hallucinations far less prevalent and, if the model adds citations, gives you what you need to rectify any errors.

For this same reason, it’s easier to trust a RAG-powered language model, and they’re (usually) easier to use. As we said above a lot of the tricky technical detail is hidden from the end user, so all they see is a better-grounded output complete with a list of documents they can use to check that the output they’ve gotten is right.

Applications of Retrieval Augmented Generation

We’ve said a lot about how awesome RAG is, but what are some of its primary use cases? That will be our focus here, over the next few sections.

Enhancing Question Answering Systems

Perhaps the most obvious way RAG could be used is to supercharge the function of question-answering systems. This is already a very strong use case of generative AI, as attested to by the fact that many people are turning to tools like ChatGPT instead of Google when they want to take a first stab at understanding a new subject.

With RAG, they can get more precise and contextually relevant answers, enabling them to overcome hurdles and progress more quickly.

Of course, this dynamic will also play out in contact centers, which are more often leaning on question-answering systems to either make their agents more effective, or to give customers the resources they need to solve their own problems.

Chatbots and Conversational Agents

Chatbots are another technology that could be substantially upgraded through RAG. Because this is so closely related to the previous section we’ll keep our comments brief; suffice it to say, a chatbot able to ground its replies in internal documentation or a good external database will be much better than one that can’t.

Revolutionizing Content Creation

Because generative models are so, well, generative, they’ve already become staples in the workflows of many creative sorts, such as writers, marketers, etc. A writer might use a generative model to outline a piece, paraphrase their own earlier work, or take the other side of a contentious issue.

This, too, is a place where RAG shines. Whether you’re tinkering with the structure of a new article or trying to build a full-fledged research assistant to master an arcane part of computer science, it can only help to have more factual, grounded output.

Recommendation Systems

Finally, recommendation systems could see a boost from RAG. As you can probably tell from their name, recommendation systems are machine-learning tools that find patterns in a set of preferences and use them to make new recommendations that fit that pattern.

With grounding through RAG, this could become even better. Imagine not only having recommendations, but also specific details about why a particular recommendation was made, to say nothing of recommendations that are tied to a vast set of external resources.

Conclusion

For all the change we’ve already seen from generative AI, RAG has yet more more potential to transform our interaction with AI. With retrieval augmented generation, we could see substantial upgrades in the way we access information and use it to create new things.

If you’re intrigued by the promise of generative AI and the ways in which it could supercharge your contact center, set up a demo of the Quiq platform today!

Request A Demo

Footnotes

[1] This assumes that the book you’re giving them is itself up-to-date, and the same is true with RAG. A generative model is only as good as its data.

Getting the Most Out of Your Customer Insights with AI

The phrase “Knowledge is power” is usually believed to have originated with 16th- and 17th-century English philosopher Francis Bacon, in his Meditationes Sacræ. Because many people recognize something profoundly right about this sentiment, it has become received wisdom in the centuries since.

Now, data isn’t exactly the same thing as knowledge, but it is tremendously powerful. Armed with enough of the right kind of data, contact center managers can make better decisions about how to deploy resources, resolve customer issues, and run their business.

As is usually the case, the data contact center managers are looking for will be unique to their field. This article will discuss these data, why they matter, and how AI can transform how you gather, analyze, and act on data.

Let’s get going!

What are Customer Insights in Contact Centers?

As a contact center, your primary focus is on helping people work through issues related to a software product or something similar. But you might find yourself wondering who these people are, what parts of the customer experience they’re stumbling over, which issues are being escalated to human agents and which are resolved by bots, etc.

If you knew these things, you would be able to notice patterns and start proactively fixing problems before they even arise. This is what customer insights is all about, and it can allow you to finetune your procedures, write clearer technical documentation, figure out the best place to use generative AI in your contact center, and much more.

What are the Major Types of Customer Insights?

Before we turn to a discussion of the specifics of customer insights, we’ll deal with the major kinds of customer insights there are. This will provide you with an overarching framework for thinking about this topic and where different approaches might fit in.

Speech and Text Data

Customer service and customer experience both tend to be language-heavy fields. When an agent works with a customer over the phone or via chat, a lot of natural language is generated, and that language can be analyzed. You might use a technique like sentiment analysis, for example, to gauge how frustrated customers are when they contact an agent. This will allow you to form a fuller picture of the people you’re helping, and discover ways of doing so more effectively.

Data on Customer Satisfaction

Contact centers exist to make customers happy as they try to use a product, and for this reason, it’s common practice to send out surveys when a customer interaction is done. When done correctly, the information contained in these surveys is incredibly valuable, and can let you know whether or not you’re improving over time, whether a specific approach to training or a new large language model is helping or hurting customer satisfaction, and more.

Predictive Analytics

Predictive analytics is a huge field, but it mostly boils down to using machine learning or something similar to predict the future based on what’s happened in the past. You might try to forecast average handle time (AHT) based on the time of the year, on the premise that when an issue arises has something to do with how long it will take to get it resolved.

To do this effectively you would need a fair amount of AHT data, along with the corresponding data about when the complaints were raised, and then you could fit a linear regression model on these two data streams. If you find that AHT reliably climbs during certain periods, you can have more agents on hand when required.

Data on Agent Performance

Like employees in any other kind of business, agents perform at different levels. Junior agents will likely take much longer to work through a thorny customer issue than more senior ones, of course, and the same could be said for agents with an extensive technical background versus those without the knowledge this background confers. Or, the same agent might excel at certain kinds of tasks but perform much worse on others.

Regardless, by gathering these data on how agents are performing you, as the manager, can figure out where weaknesses lie across all your teams. With this information, you’ll be able to strategize about how to address those weaknesses with coaching, additional education, a refresh of the standard operating procedures, or what have you.

Channel Analytics

These days, there are usually multiple ways for a customer to get in touch with your contact center, and they all have different dynamics. Sending a long email isn’t the same thing as talking on the phone, and both are distinct from reaching out on social media or talking to a bot. If you have analytics on specific channels, how customers use them, and what their experience was like, you can make decisions about what channels to prioritize.

What’s more, customers will often have interacted with your brand in the past through one or more of these channels. If you’ve been tracking those interactions, you can incorporate this context to personalize responses when they reach out to resolve an issue in the future, which can help boost customer satisfaction.

What Specific Metrics are Tracked for Customer Insights?

Now that we have a handle on what kind of customer insights there are, let’s talk about specific metrics that come up in contact centers!

First Contact Resolution (FCR)

The first contact resolution is the fraction of issues a contact center is able to resolve on the first try, i.e. the first time the customer reaches out. It’s sometimes also known as Right First Time (RFT), for this reason. Note that first contact resolution can apply to any channel, whereas first call resolution applies only when the customer contacts you over the phone. They have the same acronym but refer to two different metrics.

Average Handle Time (AHT)

The average handle time is one of the more important metrics contact centers track, and it refers to the mean length of time an agent spends on a task. This is not the same thing as how long the agent spends talking to a customer, and instead encompasses any work that goes on afterward as well.

Customer Satisfaction (CSAT)

The customer satisfaction score attempts to gauge how customers feel about your product and service. It’s common practice, to collect this information from many customers, then averaging them to get a broader picture of how your customers feel. The CSAT can give you a sense of whether customers are getting happier over time, whether certain products, issues, or agents make them happier than others, etc.

Call Abandon Rate (CAR)

The call abandon rate is the fraction of customers who end a call with an agent before their question has been answered. It can be affected by many things, including how long the customers have to wait on hold, whether they like the “hold” music you play, and similar sorts of factors. You should be aware that CAR doesn’t account for missed calls, lost calls, or dropped calls.

***

Data-driven contact centers track a lot of metrics, and these are just a sample. Nevertheless, they should convey a sense of what kinds of numbers a manager might want to examine.

How Can AI Help with Customer Insights?

And now, we come to the “main” event, a discussion of how artificial intelligence can help contact center managers gather and better utilize customer insights.

Natural Language Processing and Sentiment Analysis

An obvious place to begin is with natural language processing (NLP), which refers to a subfield in machine learning that uses various algorithms to parse (or generate) language.

There are many ways in which NLP can aid in finding customer insights. We’ve already mentioned sentiment analysis, which detects the overall emotional tenor of a piece of language. If you track sentiment over time, you’ll be able to see if you’re delivering more or less customer satisfaction.

You could even get slightly more sophisticated and pair sentiment analysis with something like named entity recognition, which extracts information about entities from language. This would allow you to e.g. know that a given customer is upset, and also that the name of a particular product kept coming up.

Classifying Different Kinds of Communication

For various reasons, contact centers keep transcripts and recordings of all the interactions they have with a customer. This means that they have access to a vast amount of textual information, but since it’s unstructured and messy it’s hard to know what to do with it.

Using any of several different ML-based classification techniques, a contact center manager could begin to tame this complexity. Suppose, for example, she wanted to have a high-level overview of why people are reaching out for support. With a good classification pipeline, she could start automating the processing of sorting communications into different categories, like “help logging in” or “canceling a subscription”.

With enough of this kind of information, she could start to spot trends and make decisions on that basis.

Statistical Analysis and A/B Testing

Finally, we’ll turn to statistical analysis. Above, we talked a lot about natural language processing and similar endeavors, but more than likely when people say “customer insights” they mean something like “statistical analysis”.

This is a huge field, so we’re going to illustrate its importance with an example focusing on churn. If you have a subscription-based business, you’ll have some customers who eventually leave, and this is known as “churn”. Churn analysis has sprung up to apply data science to understanding these customer decisions, in the hopes that you can resolve any underlying issues and positively impact the bottom line.

What kinds of questions would be addressed by churn analysis? Things like what kinds of customers are canceling (i.e. are they young or old, do they belong to a particular demographic, etc.), figuring out their reasons for doing so, using that to predict which similar questions might be in danger of churning soon, and thinking analytically about how to reduce churn.

And how does AI help? There now exist any number of AI tools that substantially automate the process of gathering and cleaning the relevant data, applying standard tests, making simple charts, and making your job of extracting customer insights much easier.

What AI Tools Can Be Used for Customer Insights?

By now you’re probably eager to try using AI for customer insights, but before you do that, let’s spend some talking about what you’d look for in a customer insights tool.

Performant and Reliable

Ideally, you want something that you can depend upon and that won’t drive you crazy with performance issues. A good customer insights tool will have many optimizations under the hood that make crunching numbers easy, and shouldn’t require you to have a computer science degree to set up.

Straightforward Integration Process

Modern contact centers work across a wide variety of channels, including emails, chat, social media, phone calls, and even more. Whatever AI-powered customer insights platform you go with should be able to seamlessly integrate with all of them.

Simple to Use

Finally, your preferred solution should be relatively easy to use. Quiq Insights, for example, makes it a breeze to create customizable funnels, do advanced filtering, see the surrounding context for different conversations, and much more.

Getting the Most Out of AI-Powered Customer Insights

Data is extremely important to the success or failure of modern businesses, and it’s getting more important all the time. Contact centers have long been forward-looking and eager to adopt new technologies, and the same must be true in our brave new data-powered world.

If you’d like a demo of Quiq Insights, reach out to see how we can help you streamline your operation while boosting customer satisfaction!

Request A Demo